
Advanced features of 
relational databases

Lecture 13

By Marina Barsky

INDEXES



Disk blocks

• The Block (transferred as a Page to 
RAM) is a fixed-size portion of 
secondary storage corresponding to 
the amount of data transferred in a 
single access and physically 
occupies one or more consecutive 
sectors 

• Typical block size: 1, 4, 8, 16, or 32 KB. 

• Has to be set before creating database

• The data is read and written in 
blocks

track

geometrical 
sector

disk sector

block



Auxiliary data structures for 
efficient search: indexes

• Goal: quickly locate the record given a key

• Idea 1:

• The records are mapped to the disk blocks in specific ways: 

we deduce the disk location from a key, because records 

either sorted by key or the block is a hash of a key

• Idea 2:

• Store records in a pile 

• Provide auxiliary data structures guiding the search (think 

library index/catalogue)



Flat indexes

• Have a catalog of search keys which is smaller than the 

entire table and can be searched more efficiently (in 

RAM or with less disk I/Os)

• Inside the index each value of a search key is associated 

with a unique, system-generated physical address of a 

corresponding tuple on disk: RID (file number, block 

number, slot within the data block)



• Dense index – each record has 

its representative inside an 

index

• If the table has multiple fields, 

the index – which stores only 

key-RID pair - is much smaller –

may fit into RAM

• The keys in the index are 

sorted: use binary search, 

buffer guiding pointers at 

1/2N, 1/4N, 3/4N, 1/8N, 3/8N, 

5/8N, 7/8N –th positions to 

save disk I/Os

Sorted fileIndex

DataAdditional 
structure on top

Dense indexes



• Search through index itself 

can answer if a record with 

key A exists or produce 

counts of records by key 

without accessing a data file

• Dense indexes can be added 

even to unordered heap files

Heap fileIndex

DataAdditional 
structure on topDense indexes

on unsorted files



Sparse indexes

• Sparse index – contains 

key-RID pairs for only a 

subset of records, 

typically first in each 

block. 

• Works only with sorted 

files – why?

• Allows for very small 
indexes - better chance of 
fitting in memory

• Tradeoff: must access the 
relation file even if the 
record is not present

Sorted fileIndex

DataAdditional 
structure on 
top



• Primary index – indexes on 

a sorted file for the sorting 

attribute 

• Only one primary index 

per relation – otherwise 

needs to maintain several 

sorted copies of the same 

data

Sorted filePrimary 
Index

Primary indexes



What if a flat index is too big?

Example:

• Relation of size: N = 500 GB = 5*1011 bytes

• 100 tuples per block: 5*109 blocks to index

• Each key-blockID pair is at least 16 bytes

• So, even keeping one entry per page (sparse index) 
takes too much space - 8 GB 

Solution: build an index on the index itself!



Multi-level indexes - static trees

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Data pages (sorted)

To records 
with keys >=40

2-level search-guiding ternary tree



Dynamic indexes: B+ trees

B+ tree

3

1 2 3 4 5

R1 R2 R3 R4 R5

Data stored separately

3

R3

1

R1

5

R5

2

R2

4

R4

Binary search tree



Motivation for Indexes
Consider:

SELECT title
FROM Movies
WHERE studioName = 'Disney' AND year =1995;

• There might be 10,000 Movies tuples, of which only 200 
were made in 1995.
• Naive way to implement this query is to get all 10,000 tuples and 

test the condition of the WHERE clause on each. 
• Much more efficient if we had some way of getting only the 200 

tuples from the year 1995 and testing each of them to see if the 
studio was Disney. 

• Even more efficient if we could obtain directly only the 10 or so 
tuples that satisfied both the conditions of the WHERE clause.



Movies(

title, 

year, 

length, 

studioName); 

Assume secondary indexes on 
studioName and year.

SELECT title 

FROM Movies 

WHERE 

studioName='Disney' 

AND year = 1995; 

Pointer Intersection example

RID

Intersection of results 
from 2 indexes gives RID

Schema

Query



Create Index

CREATE INDEX index_name ON table_name (column_name);

Created implicitly if you declare the column to be a PRIMARY 
KEY or UNIQUE. 

Once an index exists, the user does not have to open or use it 
with a command, it is used automatically (by query 
optimizer)

All indexes are stored separately from the table on which they 
are based



Examples

1. CREATE INDEX YearIndex ON Movies(year);

2. CREATE INDEX KeyIndex ON Movies(title, year);

3. CREATE INDEX KeyIndex ON Movies (year, title);

When would it be beneficial to create the third vs. second?

Dropping an index:

DROP INDEX YearIndex; 



Index on primary key

• Often, the most useful index we can put on a relation is an index on its 
key.

• Two reasons:
• Queries in which a value for the key is specified are common. 
• Since there is at most one tuple with a given key value, the index 

returns either nothing or one location for a tuple. 
• Thus, at most one page of the relation must be retrieved to get 

that tuple into main memory

Example
SELECT name
FROM Movie, MovieExec
WHERE title = 'Star Wars' 

AND year='1994' 
AND producerC =cert;



Index on primary key: comparison

Without Key Indexes

• Read each of the blocks of Movies and each of the blocks of MovieExec
at least once. 
• In fact, since these blocks may be too numerous to fit in main 

memory at the same time, we may have to read each block from 
disk many times (to form a Cartesian product). 

With Key Indexes

• Only two block reads.
• Index on the key (title, year) for Movies helps us find the one 

Movie tuple for 'Star Wars' quickly. 
• Only one block - containing that tuple - is read from disk. 

• Then, after finding the producer-certificate number in that tuple, an 
index on the key cert for MovieExec helps us quickly find the one 
tuple for the producer in the MovieExec relation. 
• Only one block is read again.



Non-Beneficial Indexes

• When the index is not on a key, it may or may not be beneficial. 

Example (of not being beneficial)

Suppose the only index we have on Movies is one on

year, and we want to answer the query:

SELECT *

FROM Movie

WHERE year = 1990;

• Suppose the tuples of Movie are stored alphabetically by title. 

• Then this query gains little from the index on year. If there are, say, 100 
movies per page, there is a good chance that any given page has at least 
one movie made in 1990. 



Beneficial Indexes

• There are two situations in which an index can be effective, even if it is not 
on a key.

1. If the attribute is almost a key; that is, relatively few tuples have a 
given value for that attribute. 
Even if each of the tuples with a given value is on a different page, 
we shall not have to retrieve too many pages from disk.

Example

• Suppose Movies had an index on title rather than (title, year).

SELECT name

FROM Movie, MovieExec

WHERE title = 'King Kong' AND producerC =cert; 



Beneficial Indexes (cont.)

2. If the tuples are "clustered" on the indexed attribute. We cluster a 
relation on an attribute by grouping the tuples with a common value 
for that attribute onto as few pages as possible. 

• Then, even if there are many tuples, we shall not have to retrieve 
nearly as many pages as there are tuples.

Example

• Suppose Movies had an index on year and tuples are clustered on year.

SELECT *

FROM Movie

WHERE year = 1990;



When to create indexes

Trade-off

• The existence of an index on an attribute may speed up 
greatly the execution of those queries in which a value, or 
range of values, is specified for that attribute, and may 
speed up joins involving that attribute as well.

• On the other hand, every index built for one or more 
attributes of some relation makes insertions, deletions, and 
updates to that relation more complex and time-consuming.



Cost Model

1. Tuples of a relation are stored in many pages (blocks) of a 
disk.

2. One block, which is typically several thousand bytes at 
least (e.g. 16K), will hold many tuples.

3. To examine even one tuple requires that the whole block 
be brought into main memory.

The cost of a query is dominated by the number of block 
accesses. Main memory accesses can be neglected. 



Introduction to selection of indexes

StarsIn(movieTitle, movie Year , starName)

Q1:
SELECT movieTitle, movieYear
FROM StarsIn
WHERE starName = s;

Q2:
SELECT starName
FROM StarsIn
WHERE movieTitle = t AND movieYear= y;

I:
INSERT INTO StarsIn VALUES(t, y, s);



Before we begin: answer 

1. How many pages for StarsIn: 10 pages

If we need to examine the entire relation the cost is 10.

2. Average number of movies per star: on the average, a star 
has appeared in 3 movies 

3. Average number of stars per movie: a movie has 3 stars on 
average



Analysis

1. Since the tuples for a given star or a given movie are likely to be spread 
over the 10 pages of StarsIn, even if we have an index on starName or on 
the combination of movie title and movieYear, it will take 3 disk accesses to 
retrieve the 3 tuples for a star or movie. If we have no index on the star or 
movie, respectively, then 10 disk accesses are required.

2. One disk access is needed to read a page of the index every time we use 
that index to locate tuples with a given value for the indexed attribute(s). If 
an index page must be modified (in the case of an insertion), then another 
disk access is needed to write back the modified page.

3. Likewise, in the case of an insertion, one disk access is needed to read a 
page on which the new tuple will be placed, and another disk access is 
needed to write back this page. We assume that, even without an index, 
we can find some page on which an additional tuple will fit, without 
scanning the entire relation.



Average cost for NO INDEX

Action NO INDEX

Q1 10

Q2 10

Ins 2

Average 10p1 + 10p2 + 2(1 - p1 – p2) = 2 + 8p1 +8p2

p1 is the fraction of times Q1 is executed

p2 is the fraction of times Q2 is executed

1-p1-p2 is the fraction of times I is executed



Average cost for Star INDEX

Action NO INDEX INDEX on Star attribute of StarsIn

Q1 10 4 (1 to read an index, 3 to load corresponding blocks

Q2 10 10

Ins 2 4 (read/write 1 page for the index and for the data)

Average 2 + 8p1 +8p2 4p1 +10p2 + 4(1 - p1 - p2) = 4 + 6p2

p1 is the fraction of times Q1 is executed

p2 is the fraction of times Q2 is executed

1-p1-p2 is the fraction of times I is executed

Q1: SELECT movieTitle, movieYear FROM StarsIn WHERE starName = s;
Q2: SELECT starName FROM StarsIn WHERE movieTitle = t AND movieYear= y;



Average cost for Movie INDEX

Action NO INDEX Star INDEX INDEX on Movies attributes only

Q1 10 4 10

Q2 10 10 4

Ins 2 4 4

Average 2 + 8p1 +8p2 4 + 6p2 4 + 6p1

p1 is the fraction of times Q1 is executed

p2 is the fraction of times Q2 is executed

1-p1-p2 is the fraction of times I is executed

Q1: SELECT movieTitle, movieYear FROM StarsIn WHERE starName = s;
Q2: SELECT starName FROM StarsIn WHERE movieTitle = t AND movieYear= y;



Average cost for both indexes

Action NO 
INDEX

Star 
INDEX

Movies 
INDEX

INDEX on Movies attributes AND Star

Q1 10 4 10 4 (1 page to read an index, 3 to read data)

Q2 10 10 4 4 (1 page to read an index, 3 to read data)

Ins 2 4 4 6 (read/write 1 page for each index and 1 for 
data)

Average 2 + 8p1

+8p2

4 + 6p2 4 + 6p1 4p1 + 4p2 + 6(1 – p1 - p2 ) = 6 - 2p1 - 2p2

p1 is the fraction of times Q1 is executed

p2 is the fraction of times Q2 is executed

1-p1-p2 is the fraction of times I is executed

Q1: SELECT movieTitle, movieYear FROM StarsIn WHERE starName = s;
Q2: SELECT starName FROM StarsIn WHERE movieTitle = t AND movieYear= y;



What solution is the best?
Action NO INDEX Star INDEX Movies INDEX INDEX on both

Q1 10 4 10 4 

Q2 10 10 4 4

Ins 2 4 4 6

Average 2 + 8p1 +8p2 4 + 6p2 4 + 6p1 6 - 2p1 - 2p2

p1 is the fraction of times Q1 is executed

p2 is the fraction of times Q2 is executed

1-p1-p2 is the fraction of times I is executed

If p1 = p2 = 0.1:
If p1 = p2 = 0.4:
If p1 = 0.5, p2 = 0.1:
If p1 = 0.1, p2 = 0.5:



Reasoning

• If p1 = p2 = 0.1, then the expression 2+ 8p1 + 8p2 is the smallest, 
so we would prefer not to create any indexes. 

• If p1 = p2 = 0.4, then the formula 6 - 2p1 - 2p2 turns out to be the 
smallest, so we would prefer indexes on both starName and on 
the (movieTitle, movieYear) combination. 

• If p1 = 0.5 and p2 = 0.1, then an index on stars only gives the best 
average value, because 4 + 6p2 is the formula with the smallest 
value. 

• If p1 = 0.1 and p2 = 0.5, then create an index on only movies.


