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Functional dependencies: 
formal definition
• X → Y is an assertion about a relation R that whenever two 

tuples of R agree on all the attributes X, then they must also 
agree on all attributes in set Y.

• Say “X → Y holds in R.”

• Convention: …, X, Y, Z represent sets of attributes; A, B, C,… 
represent single attributes.

• Convention: no set formers in sets of attributes, just ABC, 
rather than {A,B,C}.



Formal example of FDs

• AC → B

A B C

5 3 2

5 4 3

5 5 2

Does this instance violate AC → B? 



Formal example of FDs

• AC → B

A B C

5 3 2

5 4 3

5 5 2

Does this instance violate AC → B? 



Example: BBD

• name → addr

• beersliked → manf

• name → favBeer

name addr beersliked manf favBeer

Janeway Voyager Bud A.B. ?

Janeway ? WickedAle Pete’s WickedAle

Spock Enterprise Bud ? Bud



Example: BBD

• name → addr

• beersliked → manf

• name → favBeer

name addr beersliked manf favBeer

Janeway Voyager Bud A.B. WickedAle

Janeway Voyager WickedAle Pete’s WickedAle

Spock Enterprise Bud A.B. Bud



Keys: formal definition

• K is a superkey for relation R if K functionally determines 
all of R

• K is a key for R if K is a superkey, but no proper subset of K
is a superkey



Formal example of keys

• Suppose R is a relation with attributes A, B, C

• Tell how many superkeys R has if the only key is A?



Formal example of keys

• Suppose R is a relation with attributes A, B, C

• Tell how many superkeys R has if the only key is A?

• Superkeys:

• A

• AB

• ABC

• AC



Example: BBD

• The key: name

name addr favBeer

Janeway Voyager Bud

Monk Myway WickedAle

Spock Enterprise Bud



Example: BBD

• The key: name

• Superkeys:

{name, addr}

{name, addr, favBeer}

{name, favBeer}

name addr favBeer

Janeway Voyager Bud

Monk Myway WickedAle

Spock Enterprise Bud

How about {addr, favBeer}?



Inferring FD’s

• We are given FD’s X1 → A1, X2 → A2,…, Xn → An , and we want 
to know whether an FD Y → B must hold in any relation that 
satisfies the given FD’s.

• Example: If A → B and B → C hold, does A → C hold? 



Inference rules

• Splitting rule

• Transitive rule

• Trivial FDs

• Closure



Splitting (and combining) rule

• Splitting right sides of FD’s:

• X → A1A2…An holds for R precisely when 

each of X → A1, X → A2,…, X → An hold for R.

• Combining right sides of FD’s:

• when X → A1, X → A2,…, X → An hold

then X → A1A2…An holds

• There is no splitting (combining) rule for left sides!

• We’ll generally express FD’s with singleton right sides



Splitting rule reasoning

• Suppose we have A → BC

• This is an assertion that if 2 tuples agree on A, they also 
agree in all B and C

• That means that they agree in B and they agree in C: A → B, 
A → C

(a, b, c)
(a, b1, c1)
(a, b2, c2)

(a, b, c)
(a, b, c)
(a, b, c)

A → BC

(a, b, c)
(a, b, c1)
(a, b, c2)

(a, b, c)
(a, b1, c)
(a, b2, c)

A → B A → C



Example: BBD
• Drinkers(name, addr, beersLiked, manf, favBeer)

name -> {addr, favBeer}

• The same as:

name -> addr

name -> favBeer

{name, beersLiked} -> manf

• The same as:

name -> manf

beersLiked -> manf



Example: BBD

• Drinkers(name, addr, beersLiked, manf, favBeer)

name -> {addr, favBeer}

• The same as:

name -> addr

name -> favBeer

{name, beersLiked} -> manf

• Not the same as:

name -> manf

beersLiked -> manf



Inference rules

• Splitting rule

• Transitive rule

• Trivial FDs

• Closure



Transitive rule

• If X → Y and Y → Z then X → Z 

(a, b, c)
(a, b1, c1)
(a, b2, c2)

A → B

(a, b, c)
(a, b, c1)
(a, b, c2)

A → B

(a, b, c)
(a, b, c1)
(a, b, c2)

B → C

(a, b, c)
(a, b, c)
(a, b, c)

B → C

(a, b, c)
(a, b, c)
(a, b, c)

A → C



Inference rules

• Splitting rule

• Transitive rule

• Trivial FDs

• Closure



Trivial FD’s

• If X → Y and Y ⊆ X then X → Y is called a trivial dependency

• Explanation: All tuples that agree in all of X surely agree in a 
subset of them

• Example: AB → B is a trivial dependency 



Inference Test

• To test if Y → B, start by assuming two tuples agree in all 
attributes of Y

• Use the given FD’s to infer that these tuples must also agree 
in certain other attributes.

• If B is one of these attributes, then Y → B is true.

• Otherwise, the two tuples, with any forced equalities, 
form a two-tuple relation that proves Y → B does not 
follow from the given FD’s.



Inference rules

• Splitting rule

• Transitive rule

• Trivial FDs

• Closure



Closure for a set of attributes Y

• The closure of a set Φ of functional dependencies is the set 
of all functional dependencies logically implied by Φ

• The closure for an attribute set Y is a set of all implied 
dependencies with Y in the left-hand side

• The closure of Y is denoted Y +.



Computing closure for a set of 
attributes Y
• Convert all FDs to LHS-singleton FD’s using splitting rule

• Basis: Y + = Y.

• Induction: Look for an FD’s left side X that is a subset of the 
current Y +.  If the FD is X → A, add A to Y +.

Y+

new Y+

X A



Example: computing closure

• Given:

R(A,B,C,D) with FD’s AB → C, B → D, CD → A, AD → B. 

• Computing closure for AB:

{AB}+ = {ABC}  (from AB → C)

{ABC}+ = {ABCD}  (from B → D)

• Answer: 

{AB}+ = {ABCD}



Example: computing closure

• Given:

R(A,B,C,D) with FD’s AB → C, B → D, CD → A, AD → B. 

• Computing closure for B:

{B}+ = {BD}  (from B → D)

• Answer: 

{B}+ = {BD}



Example: computing closure

• Given:

R(A,B,C,D) with FD’s AB → C, B → D, CD → A, AD → B. 

• Computing closure for CD:

{CD}+ = {CDA}  (from CD → A)

{CDA}+={CDAB} (from AD → B)

• Answer: 

{CD}+ = {ABCD}



Example: computing closure

• Given:

R(A,B,C,D) with FD’s AB → C, B → D, CD → A, AD → B. 

• Computing closure for AD:

{AD}+ = {ADB}  (from AD → B)

{ADB}+={ADBC} (from AB → C)

• Answer: 

{AD}+ = {ABCD}



Why do we need to compute 
closure
• By computing closure for every possible set of attributes we 

obtain a full exhaustive set of FD’s – both declared and 
implied

• Closure has multiple applications



Using closure to test for an FD

• Suppose R(A,B,C,D,E,F) and the the FD's are

• ABC, BCAD, DE, and CFB

• We wish to test whether ABD follows from the set of 
FD's?

• We compute {A,B}+ which is {A,B,C,D,E}.

• Since D is a member of the closure, we imply ABD



Using closure to test for an FD

• Consider the relation R(A, B, C, D, E) and the set of FD’s S1 = 
{AB->C, AE->D, D->B}

• Which of the following assumptions does not follow from S1

1. S2={AD->C}

2. S2={AD->C, AE->B}

3. S2 = {ABC->D, D->B}

4. S2 = {ADE->BC}



Using closure to test for a key

One way of testing if a set of attributes, let’s say A,  is a key, is:

1. Find it’s closure A+.

2. Make sure that it contains all attributes of R.

3. Make sure that you cannot create a smaller set, let’s say 
A’, by removing one or more attributes from A, that has 
the property 2.



Using closure to compute all 
superkeys
• Given:

R(A,B,C,D) with FD’s AB → C, B → D, CD → A, AD → B. 

{AB}+ = {ABCD}

{B}+ = {BD}

{CD}+ = {ABCD}

{AD}+ = {ABCD}

{AB}, {CD}, {AD} are superkeys



Using superkeys for identifying 
candidate keys
R(A,B,C,D) with FD’s AB → C, B → D, CD → A, AD → B. 

{AB}, {CD}, {AD} are superkeys

Can A be a key?

{A}+ = {A} – no

Can B be a key?

{B}+ = {BD} – no

{AB} is a key – minimal superkey

Analogous tests show that {CD} and {AD} are also keys



Boyce-Codd Normal Form: 
formal definition

• Boyce-Codd Normal Form (BCNF): simple condition 
under which all the anomalies of 2NF, 3NF and 
BCNF can be guaranteed not to exist. 

• A relation is in BCNF if: 
Whenever there is a nontrivial dependency 

A1A2…AnB1B2…Bm

for R, it must be the case that 

{A1 , A2 , … , An} is a superkey for R.



One more time: relation is in 
BCNF when
whenever X  Y is a nontrivial FD that holds in R, 

X is a superkey

• Remember: nontrivial means Y is not contained in X.

• Remember, a superkey is any superset of a key (not 
necessarily a proper superset).



Example

Drinkers(name, addr, beersLiked, manf, favBeer)

• FD’s: name{addr, favBeer},   beersLiked->manf

• Only key is {name, beersLiked}.

• In each FD, the left side is not a superkey.

• Any one of these FD’s shows Drinkers is not in BCNF



Another Example

Beers(name, manf, manfAddr)

• FD’s: namemanf,   manfmanfAddr

• Only key is {name} .

• namemanf - does not violate BCNF

• manfmanfAddr - violation



Decomposition into BCNF

• Find a non-trivial FD A1A2…An  B1B2…Bm that violates 
BCNF, i.e. A1A2…An isn’t a superkey. 

• Decompose the relation into two overlapping relations: 

• One is all the attributes involved in the violating 
dependency and 

• the other is the left side of the violating FD and all the 
other attributes not involved in the violating FD 

• By repeatedly, choosing suitable decompositions, we can 
break any relation schema into a collection of smaller 
relations, each in BCNF.



BCNF decomposition algorithm: 
step 1

• Given: relation R with FD’s F

• Look among the given FD’s for a BCNF violation X Y

• Compute X +.

• Not all attributes, or else X is a superkey



BCNF decomposition algorithm: 
step 2
• Replace R by relations with schemas:

1. R1 = X +

2. R2 = R – (X + – X )

R-X + X X +-X

R2

R1

R



BCNF decomposition algorithm: 
step 3
• Identify all new FD’s in R1 and R2

• For each R1 and R2 – if any dependency violates BCNF - go 
to step 1

• Until no more BCNF violations 



Formal Example 1/5

• Given R(A,B,C,D) with AB C, C D, and D A

• Indicate all BCNF violations

{AB}+={ABCD}  - not a violation, {AB} is (super)key

C+ = {CDA} – violation

D+ = {DA} - violation



Formal Example 2/5

• Given R(A,B,C,D) with AB C, C D, and D A

C+ = {CDA} – violation

D+ = {DA} – violation

• Decompose into relations that are in BCNF

• Variant 1:

R1 (C, D, A}

R2 (B, C)



Formal Example 3/5

• Given R(A,B,C,D) with AB C, C D, and D A

C+ = {CDA} – violation

D+ = {DA} – violation

• Decompose into relations that are in BCNF

• Variant 2:

R1 (D, A}

R2 (B, C, D)



Formal example 4/5

• R(A,B,C,D) with AB C, C D, and D A

R1 (C, D, A}

R2 (B, C)

• Should we stop? No, we need to test R1 and R2 for BCNF 
violations

• Which FD’s do we have in R1? 

C D, and D A

C+ = {CDA} – not a violation

D+ = {DA} - violation



Formal example 5/5

• R(A,B,C,D) with AB C, C D, and D A

R1 (C, D, A}

R2 (B, C)

• Decomposing R1 with C D, and D A

D+ = {DA} – violation

R1.1 (D,A)

R1.2 (C, D)



Final result

• R(A,B,C,D) with AB C, C D, and D A

• Decomposed into:

R2 (B, C)

R1.1 (D,A)

R1.2 (C, D)

• Should we decompose any further? 

• No, because every relation with 2 attributes is automatically 
in BCNF



Every relation with 2 attributes is 
in BCNF
• R (A, B)

3 cases:

• There are no non-trivial FD’s

No violations

• A  B holds

A is the key – no violations

• B  A holds

B is the key no violations



Example: BCNF Decomposition

Drinkers(name, addr, beersLiked, manf, favBeer)

F = {name addr,  name  favBeer, beersLikedmanf}

Key: {name, addr}

• Pick BCNF violation name->addr

• Closure for the left side: {name}+ = {name, addr, favBeer}

• Decomposed relations:

Drinkers1(name, addr, favBeer)

Drinkers2(name, beersLiked, manf)



Example: continued

• We are not done; we need to check Drinkers1 and Drinkers2 
for BCNF

• For Drinkers1(name, addr, favBeer), 

relevant FD’s are name addr and   name favBeer

• Thus, {name} is the only key and Drinkers1 is in BCNF



Example: continued

• For Drinkers2(name, beersLiked, manf), the only FD is 
beersLikedmanf, and the only key is {name, beersLiked}.

• Violation of BCNF.

beersLiked+ = {beersLiked, manf} 

• so we decompose Drinkers2 into:

Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)



Example: concluded

• The resulting decomposition of Drinkers :

Drinkers1(name, addr, favBeer)

Drinkers3(beersLiked, manf)

Drinkers4(name, beersLiked)

• Notice: Drinkers1 tells us about drinkers, Drinkers3 tells us 
about beers, and Drinkers4 tells us the relationship 
between drinkers and the beers they like.


