By Marina Barsky

Design Theory for Relational Databases

Lecture 15

Functional dependencies: formal definition

- $X \rightarrow Y$ is an assertion about a relation R that whenever two tuples of *R* agree on all the attributes *X*, then they must also agree on all attributes in set *Y*.
- Say $''X \rightarrow Y$ holds in *R*."
- Convention: …, *X*, *Y*, *Z* represent sets of attributes; *A*, *B*, *C*,… represent single attributes.
- Convention: no set formers in sets of attributes, just *ABC*, rather than {*A*,*B*,*C*}.

Formal example of FDs

• $AC \rightarrow B$

Does this instance violate $AC \rightarrow B$?

Formal example of FDs

• $AC \rightarrow B$

Does this instance violate $AC \rightarrow B$?

Example: BBD

- name \rightarrow addr
- beersliked \rightarrow manf
- name \rightarrow favBeer

Example: BBD

- name \rightarrow addr
- beersliked \rightarrow manf
- name \rightarrow favBeer

Keys: formal definition

- *K* is a *superkey* for relation *R* if *K* functionally determines all of *R*
- *K* is a *key* for *R* if *K* is a superkey, but no proper subset of *K* is a superkey

Formal example of keys

- Suppose R is a relation with attributes A, B, C
- Tell how many superkeys R has if the only key is A?

Formal example of keys

- Suppose R is a relation with attributes A, B, C
- Tell how many superkeys R has if the only key is A?
- Superkeys:
	- \bullet A
	- AB
	- ABC
	- AC

Example: BBD

• The key: *name*

Example: BBD

- The key: *name*
- Superkeys:

{name, addr} {name, addr, favBeer} {name, favBeer}

How about {addr, favBeer}?

Inferring FD's

• We are given FD's $X_1 \rightarrow A_1$, $X_2 \rightarrow A_2$, $X_n \rightarrow A_n$, and we want to know whether an FD $Y \rightarrow B$ must hold in any relation that satisfies the given FD's.

• Example: If $A \rightarrow B$ and $B \rightarrow C$ hold, does $A \rightarrow C$ hold?

Inference rules

- Splitting rule
- Transitive rule
- Trivial FDs
- Closure

Splitting (and combining) rule

- Splitting right sides of FD's:
	- $X \rightarrow A_1A_2...A_n$ holds for *R* precisely when each of $X \to A_1$, $X \to A_2$,..., $X \to A_n$ hold for *R*.
- Combining right sides of FD's:
	- when $X \to A_1$, $X \to A_2$, ..., $X \to A_n$ hold then $X \to A_1A_2...A_n$ holds
- **There is no splitting (combining) rule for left sides!**
- We'll generally express FD's with singleton right sides

Splitting rule reasoning

- Suppose we have $A \rightarrow BC$
- This is an assertion that if 2 tuples agree on A, they also agree in all B and C
- That means that they agree in B and they agree in C: $A \rightarrow B$, $A \rightarrow C$

$A \rightarrow BC$	$A \rightarrow B$	$A \rightarrow C$	
(a, b, c)	(a, b, c)	(a, b, c)	(a, b, c)
(a, b1, c1)	(a, b, c)	(a, b, c1)	(a, b1, c)
(a, b2, c2)	(a, b, c)	(a, b, c2)	(a, b2, c)

Example: BBD

• Drinkers(name, addr, beersLiked, manf, favBeer)

name -> {addr, favBeer}

- The same as:
- name -> addr

name -> favBeer

{name, beersLiked} -> manf

• The same as:

name -> manf

beersLiked -> manf

Example: BBD

• Drinkers(name, addr, beersLiked, manf, favBeer)

name -> {addr, favBeer}

- The same as:
- name -> addr
- name -> favBeer

{name, beersLiked} -> manf

- Not the same as:
- name -> manf
- beersLiked -> manf

Inference rules

- Splitting rule
- Transitive rule
- Trivial FDs
- Closure

Transitive rule

• If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

Inference rules

- Splitting rule
- Transitive rule
- Trivial FDs
- Closure

Trivial FD's

- If $X \rightarrow Y$ and $Y \subseteq X$ then $X \rightarrow Y$ is called a trivial dependency
- Explanation: All tuples that agree in all of X surely agree in a subset of them
- Example: $AB \rightarrow B$ is a trivial dependency

Inference Test

- To test if $Y \rightarrow B$, start by assuming two tuples agree in all attributes of *Y*
- Use the given FD's to infer that these tuples must also agree in certain other attributes.
	- If B is one of these attributes, then $Y \rightarrow B$ is true.
	- Otherwise, the two tuples, with any forced equalities, form a two-tuple relation that proves $Y \rightarrow B$ does not follow from the given FD's.

Inference rules

- Splitting rule
- Transitive rule
- Trivial FDs
- Closure

Closure for a set of attributes Y

- The *closure* of a set Φ of functional dependencies is the set of all functional dependencies logically implied by Φ
- The closure for an attribute set Y is a set of all implied dependencies with Y in the left-hand side
- The *closure* of *Y* is denoted *Y* ⁺ .

Computing closure for a set of attributes Y

- Convert all FDs to LHS-singleton FD's using splitting rule
- Basis: $Y^+ = Y$.
- Induction: Look for an FD's left side *X* that is a subset of the current Y^+ . If the FD is $X \rightarrow A$, add A to Y^+ .

• Given:

 $R(A,B,C,D)$ with FD's AB \rightarrow C, B \rightarrow D, CD \rightarrow A, AD \rightarrow B.

- Computing closure for **AB**: ${AB}^+ = {ABC}$ (from AB \rightarrow C) ${ABC}^+ = {ABCD}$ (from $B \rightarrow D$)
- Answer:

{AB}⁺ = {ABCD}

• Given:

 $R(A,B,C,D)$ with FD's AB \rightarrow C, B \rightarrow D, CD \rightarrow A, AD \rightarrow B.

• Computing closure for **B**: ${B}^+ = {BD}$ (from B \rightarrow D)

• Answer:

{B}⁺ = {BD}

• Given:

 $R(A,B,C,D)$ with FD's AB \rightarrow C, B \rightarrow D, CD \rightarrow A, AD \rightarrow B.

• Computing closure for CD: ${CD}^+ = {CDA}$ (from $CD \rightarrow A$) ${CDA}+-{CDAB}$ (from AD \rightarrow B)

• Answer:

{CD}⁺ = {ABCD}

• Given:

 $R(A,B,C,D)$ with FD's AB \rightarrow C, B \rightarrow D, CD \rightarrow A, AD \rightarrow B.

• Computing closure for **AD**: ${AD}^+={ADB}$ (from $AD \rightarrow B$) ${ADB}+-{ADBC}$ (from AB \rightarrow C)

• Answer:

{AD}⁺ = {ABCD}

Why do we need to compute closure

- By computing closure for every possible set of attributes we obtain a full exhaustive set of FD's – both declared and implied
- Closure has multiple applications

Using closure to test for an FD

- Suppose R(A,B,C,D,E,F) and the the FD's are
- AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, and CF \rightarrow B
- We wish to test whether $AB\rightarrow D$ follows from the set of FD's?
- We compute ${A,B}^+$ which is ${A,B,C,D,E}$.
- Since D is a member of the closure, we imply $AB\rightarrow D$

Using closure to test for an FD

- Consider the relation R(A, B, C, D, E) and the set of FD's S1 = ${AB->C, AE->D, D->B}$
- Which of the following assumptions does not follow from S1
- 1. S2={AD->C}
- 2. S2={AD->C, AE->B}
- 3. $S2 = \{ABC\text{-}5D, D\text{-}5B\}$
- 4. $S2 = \{ADE->BC\}$

Using closure to test for a key

One way of testing if a set of attributes, let's say A, is a key, is:

- 1. Find it's closure A⁺.
- 2. Make sure that it contains all attributes of R.
- 3. Make sure that you cannot create a smaller set, let's say A', by removing one or more attributes from A, that has the property 2.

Using closure to compute all superkeys

• Given:

 $R(A,B,C,D)$ with FD's AB \rightarrow C, B \rightarrow D, CD \rightarrow A, AD \rightarrow B.

```
{AB}+ = {ABCD}
{B}+ = {BD}
{CD}+ = {ABCD}
{AD}+ = {ABCD}
```
{AB}, {CD}, {AD} are superkeys

Using superkeys for identifying candidate keys

 $R(A,B,C,D)$ with FD's AB \rightarrow C, B \rightarrow D, CD \rightarrow A, AD \rightarrow B.

{AB}, {CD}, {AD} are superkeys Can A be a key? ${A}^+ = {A} - n$ o

Can B be a key? **{B}⁺ = {BD} – no**

{AB} is a key – minimal superkey Analogous tests show that {CD} and {AD} are also keys

Boyce-Codd Normal Form: formal definition

- Boyce-Codd Normal Form (BCNF): simple condition under which all the anomalies of 2NF, 3NF and BCNF can be guaranteed not to exist.
- A relation is in **BCNF** if:

Whenever there is a *nontrivial* dependency $A_1A_2...A_n \rightarrow B_1B_2...B_m$ for **R**, it must be the case that ${A_1, A_2, ..., A_n}$ is a **superkey** for **R**.

One more time: relation is in BCNF when

whenever $X \rightarrow Y$ is a nontrivial FD that holds in R, *X* is a **superkey**

- Remember: *nontrivial* means *Y* is not contained in *X*.
- Remember, a *superkey* is any superset of a key (not necessarily a proper superset).

Example

Drinkers(name, addr, beersLiked, manf, favBeer)

- **FD's**: name \rightarrow {addr, favBeer}, beersLiked->manf
- Only **key** is {name, beersLiked}.
- In each FD, the left side is *not* a superkey.
- Any one of these FD's shows *Drinkers* is **not in BCNF**

Another Example

Beers(name, manf, manfAddr)

- FD's: name \rightarrow manf, manf \rightarrow manfAddr
- Only key is {name}.
- name \rightarrow manf does not violate BCNF
- manf \rightarrow manfAddr violation

Decomposition into BCNF

- Find a non-trivial FD $A_1A_2...A_n \rightarrow B_1B_2...B_m$ that violates BCNF, i.e. $A_1A_2...A_n$ isn't a superkey.
- Decompose the relation into two overlapping relations:
	- One is all the attributes involved in the violating dependency and
	- the other is the **left side of the violating FD** and all the other attributes not involved in the violating FD
- By repeatedly, choosing suitable decompositions, we can break any relation schema into a collection of smaller relations, each in BCNF.

BCNF decomposition algorithm: step 1

- Given: relation *R* with FD's *F*
- Look among the given FD's for a BCNF violation $X \rightarrow Y$
- Compute *X* + .
	- Not all attributes, or else X is a superkey

BCNF decomposition algorithm: step 2

• Replace *R* by relations with schemas:

1.
$$
R_1 = X^+
$$

2. $R_2 = R - (X^+ - X)$

BCNF decomposition algorithm: step 3

- Identify all new FD's in R1 and R2
- For each R1 and R2 if any dependency violates BCNF go to step 1
- Until no more BCNF violations

Formal Example 1/5

- Given R(A,B,C,D) with AB \rightarrow C, C \rightarrow D, and D \rightarrow A
- Indicate all BCNF violations

 ${AB}^+={ABCD}$ - not a violation, ${AB}$ is (super)key C^+ = {CDA} – violation $D^+ = \{DA\}$ - violation

Formal Example 2/5

- Given R(A,B,C,D) with AB \rightarrow C, C \rightarrow D, and D \rightarrow A
- $C^* = \{CDA\}$ violation
- $D^+ = \{DA\}$ violation
- Decompose into relations that are in BCNF
- Variant 1: R1 (C, D, A}
- R2 (B, C)

Formal Example 3/5

- Given R(A,B,C,D) with AB \rightarrow C, C \rightarrow D, and D \rightarrow A
- C^+ = {CDA} violation
- $D^+ = {DA} violation$
- Decompose into relations that are in BCNF
- Variant 2:
- R1 (D, A}
- R2 (B, C, D)

Formal example 4/5

- R(A,B,C,D) with AB \rightarrow C, C \rightarrow D, and D \rightarrow A R1 (C, D, A} R2 (B, C)
- Should we stop? No, we need to test R1 and R2 for BCNF violations
- Which FD's do we have in R1?

 $C \rightarrow D$, and $D \rightarrow A$

 C^+ = {CDA} – not a violation $D^+ = \{DA\}$ - violation

Formal example 5/5

- R(A,B,C,D) with AB \rightarrow C, C \rightarrow D, and D \rightarrow A R1 (C, D, A} R2 (B, C)
- Decomposing R1 with $C \rightarrow D$, and $D \rightarrow A$ D^+ = {DA} – violation

R1.1 (D,A) R1.2 (C, D)

Final result

- R(A,B,C,D) with AB \rightarrow C, C \rightarrow D, and D \rightarrow A
- Decomposed into:
- R2 (B, C) R1.1 (D,A) R1.2 (C, D)
- Should we decompose any further?
- No, because every relation with 2 attributes is automatically in BCNF

Every relation with 2 attributes is in BCNF

- $R(A, B)$
- 3 cases:
- There are no non-trivial FD's

No violations

- $A \rightarrow B$ holds
- A is the key $-$ no violations
- $B \rightarrow A$ holds

B is the key no violations

Example: BCNF Decomposition

Drinkers(name, addr, beersLiked, manf, favBeer) $F = \{name \rightarrow addr, name \rightarrow favBeer, beersLike d \rightarrow manf\}$ Key: {name, addr}

- Pick BCNF violation name->addr
- Closure for the left side: ${name}$ + = ${name}$, addr, favBeer $}$
- Decomposed relations:

Drinkers1(name, addr, favBeer) Drinkers2(name, beersLiked, manf)

Example: continued

- We are not done; we need to check Drinkers1 and Drinkers2 for BCNF
- For Drinkers1(name, addr, favBeer), relevant FD's are name \rightarrow addr and name \rightarrow favBeer
- Thus, {name} is the only key and Drinkers1 is in BCNF

Example: continued

- For Drinkers2(name, beersLiked, manf), the only FD is beersLiked \rightarrow manf, and the only key is {name, beersLiked}.
- Violation of BCNF.

beersLiked⁺ = {beersLiked, manf}

• so we decompose *Drinkers2* into: Drinkers3(beersLiked, manf) Drinkers4(name, beersLiked)

Example: concluded

- The resulting decomposition of *Drinkers* : Drinkers1(name, addr, favBeer) Drinkers3(beersLiked, manf) Drinkers4(name, beersLiked)
- Notice: *Drinkers1* tells us about drinkers, *Drinkers3* tells us about beers, and *Drinkers4* tells us the relationship between drinkers and the beers they like.