
Desired properties of
decompositions

Lecture 16

By Marina Barsky

We expect that after decomposition

• No anomalies and redundancies

• We can recover the original relation from the tuples in its
decompositions

• We can ensure that after reconstructing the original relation
from the decompositions, the original FD's hold

Desired properties of normalization:
after decomposition

• No redundancies and anomalies

• Recoverability of information

• Preservation of original FD’s

Recovering Information from a
decomposition by join
• We have the relation R(A, B, C) and B C holds

Then we decompose R into R1 and R2 as follows:

Joining the two would get the R back.

A B C

a b c

A B

a b

B C

b c

Recovering Information from a
decomposition by join:
lossless join
• Getting the tuples we started back is not enough to show that the

original relation R is truly represented by the decomposition.

Then we decompose R into R1 and R2 as follows:

A B C

a b c

a1 b c1

A B

a b

a1 b

B C

b c

b c1

Recovering Information from a
decomposition by join:
lossless join
• Getting the tuples we started back is not enough to show that the

original relation R is truly represented by the decomposition.

Then we decompose R into R1 and R2 as follows:

A B C

a b c

a1 b c1

A B

a b

a1 b

B C

b c

Because we decomposed along B C,
we can conclude that c1=c are the same
so really there is only one tuple in R2

Recovering Information from a
non-BCNF decomposition:
lossy join
• Note that the FD should exist, otherwise the join wouldn't reconstruct

the original relation

• Example: we have the relation R(A, B, C) but neither B  A nor B C
holds.

Then we decompose R into R1 and R2 as follows:

A B C

a b c

a1 b c1

A B

a b

a1 b

B C

b c

b c1

• Since both R1 and R2 share the same attribute B, if we natural join
them, we'll get:

• We got two bogus tuples, (a, b, c1) and (a1, b, c), which were not in the
original relation

A B C

a b c

a b c1

a1 b c

a1 b c1

A B

a b

a1 b

B C

b c

b c1
⋈ =

A B C

a b c

a1 b c1

Recovering Information from a
non-BCNF decomposition:
lossy join

Testing for a lossless Join

• If we project R onto R1, R2,…, Rk , can we recover R by
rejoining?

• Any original tuple in R surely can be recovered from its
projected fragments.

• So the only question is: when we rejoin, do we ever get
back something we didn’t have originally?

Chase test for lossless join

• An organized way of proving that any tuple t in R1⋈ R2⋈ …
Rk is in the original relation R

• We construct an example of the original relation in a special
way, representing the decompositions by leaving the
corresponding values unsubscribed

• This representation is called a Tableau (example on the next
page)

Example: Tableau

• Relation R(A, B, C, D)

• Decomposed into:

R1 (A,D)

R2 (A, C)

R3 (B, C, D)

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

Tuple t = (a, b, c, d)

This row is a test case for R1(A,D). So we
leave a and d unsubscribed, and label b1
and c1 as arbitrary values in row 1

Example: Tableau

• Relation R(A, B, C, D)

• Decomposed into:

R1 (A,D)

R2 (A, C)

R3 (B, C, D)

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

Tuple t = (a, b, c, d)

This row is a test case for R2(A,C). So we
leave a and c unsubscribed, and label b2
and d2 as arbitrary values in row 2

Example: Tableau

• Relation R(A, B, C, D)

• Decomposed into:

R1 (A,D)

R2 (A, C)

R3 (B, C, D)

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

Tuple t = (a, b, c, d)

This row is a test case for R3(B,C,D). So
we leave b. c and d unsubscribed, and
label a3 as arbitrary value in row 3

Goal: show that after project and
join no new bogus tuples
• We “chase” the tableau applying FD’s one-by-one

• Relation R(A, B, C, D)

• FD’s:

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

?

Tableau

A B C D

a b1 c1 d

a b2 c d2

a3 b c d
Project and join

Chase test 1/4

• Relation R(A, B, C, D)

• FD’s:

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

Chase test 2/4

• Relation R(A, B, C, D)

• FD’s:

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

Chase test 3/4

• Relation R(A, B, C, D)

• FD’s:

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

Chase test: conclusion

• Relation R(A, B, C, D)

• FD’s:

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

Once we have an entire row
unsubscribed, we know that the
decomposition is lossless – chase
test is complete

Chase test: conclusion

• Relation R(A, B, C, D)

• FD’s:

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

If you project this relation onto R1 (A,D), R2
(A, C), and R3 (B, C, D), and then join, you
will get exactly the same original relation
(you can check)

Chase test: conclusion

• Relation R(A, B, C, D)

• FD’s:

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

The decomposition into R1 (A,D), R2
(A, C), R3 (B, C, D) is a lossless
decomposition

Chase test: another example

• Suppose we have relation R(A,B,C,D)
with FD BAD

• We have decomposed into

R1(A,B), R2(B,C), R3(C,D)

A B C D

a b c1 d1

a2 b c d2

a3 b3 c d

A B C D

a b c1 d1

a b c d1

a3 b3 c d

If you now project and join back,
you will get bogus tuples, for
example (a3, b3, c, d1) which
was not in the original relation

The decomposition into R1{A,B},
R2{B,C}, R3{C,D} is a lossy
decomposition

Summary of the “Chase”

1. If two rows agree in the left side of a FD, make their right
sides agree too.

2. Always replace a subscripted symbol by the
corresponding unsubscripted one, if possible.

3. If we ever get an unsubscripted row, we know any tuple
in the project-join is in the original (the join is lossless).

4. Otherwise, the final tableau is a counterexample.

Desired properties of normalization:
after decomposition

• No redundancies and anomalies

• Recoverability of information

• Preservation of original FD’s

Preservation of original FD’s

• Most BCNF decompositions preserve original FD’s

• There are special cases when the original relation cannot be
decomposed into BCNF and preserve original FD’s

BCNF decomposition which does not
preserve FD’s
• There is one structure of FD’s that causes trouble when we

decompose.

AB C and C B

• There are two keys, {A,B} and {A,C}

• C B is a BCNF violation, so we must decompose into AC,
BC

• The difference here that a violating FD C B has B in RHS,
and B is a part of a primary key

• An attribute that is a part of some key is called a prime

Example: BCNF gone wrong

• Given R (client, bank, banker) with FD’s:

{client, bank}  banker - {client, bank} is the key

banker  bank – violation

• We decompose into

R1 (banker, bank)

R2 (client, banker)

• However the original FD {client, bank}  banker is lost in
this decomposition!

Example continued: at the
moment of decomposition
• R (client, bank, banker)

• FD’s:

{client, bank}  banker

banker  bank

• Decomposition:

R1 (banker, bank)

R2 (client, banker)

R

client bank banker

A 1 X

A 2 Y

B 1 X

R1

banker bank

X 1

Y 2

{client, bank}  banker
banker  bank

R1

client banker

A X

A Y

B X

banker  bank No FD’s

Example continued: lossless
decomposition

R

client bank banker

A 1 X

A 2 Y

B 1 X

R1

banker bank

X 1

Y 2

{client, bank}  banker
banker  bank

R2

client banker

A X

A Y

B X

banker  bank
No FD’s

⋈

The decomposition is
lossless – requirement
2 is satisfied

Example continued: no original
constraint {client, bank}  banker

R1

banker bank

X 1

Y 1

R2

client banker

A X

A Y

B X

banker  bank
No FD’s

The only requirement is that
banker uniquely identifies
bank

Now we can insert into R1 and R2 without the original
constraints, and that will allow to insert invalid values

Example continued: no original
constraint {client, bank}  banker

R

client bank banker

A 1 X

A 1 Y

B 1 X

R1

banker bank

X 1

Y 1

{client, bank}  banker
banker  bank

R2

client banker

A X

A Y

B X

banker  bank
No FD’s

⋈

Invalid join! Tuple (A, 1, Y)
should have been
prevented by the original
FD {client, bank}  banker

Another example – zip code

R (city, street, zipcode)

• FD’s:

{city, street}  zipcode

zipcode city

R

city street zipcode

A X 10

B X 20

A Y 11

B Y 20

R1

zipcode city

10 A

20 B

11 A

R2

street zipcode

X 10

X 20

Y 11

Y 20

It seems that we can
still recover the
original by join

Another example – concluded

R

city street zipcode

A X 10

A X 20

A Y 11

B Y 20

R1

zipcode city

10 A

20 A

11 A

R2

street zipcode

X 10

X 20

Y 11

Y 20

But we are now free
to enter invalid
values into R1 and R2
because the original
FD {city, street} 
zipcode is lost!

⋈

Relationship between normal
forms

UNF

1 NF

2 NF

3 NF

BCNF

Relaxing normalization requirements:
3NF

• 3rd Normal Form (3NF) modifies the BCNF condition so we
do not have to decompose in this problematic situation

• An attribute is prime if it is a member of any key.

• X A violates 3NF if and only if X is not a superkey, and also
A is not prime

Example: 3NF

• In our situation with FD’s AB C and C  B, we have key
AB

• Thus A and B are each prime.

• Although C B violates BCNF, it does not violate 3NF

• So no decomposition is performed, and all the original FD’s
are preserved

Desired properties of normalization:
after decomposition

• No redundancies and anomalies

• Recoverability of information

• Preservation of original FD’s

Desired properties of normalization:
after decomposition: BCNF

• No redundancies and anomalies

• Recoverability of information

• Preservation of original FD’s

Desired properties of normalization:
after decomposition: 3NF

• No redundancies and anomalies

• Recoverability of information

• Preservation of original FD’s

Decomposition into 3NF

• We can always perform a decomposition into 3NF relations
with a lossless join and dependency preservation.

• Need to compute minimal basis for the FD’s:

1. Right sides are single attributes.

2. No FD can be removed.

3. No attribute can be removed from a left side.

Constructing a Minimal Basis

1. Split right sides.

2. Repeatedly try to remove an FD and see if the remaining
FD’s are equivalent to the original.

3. Repeatedly try to remove an attribute from a left side
and see if the resulting FD’s are equivalent to the
original.

3NF Synthesis algorithm

• Compute minimal basis

• Split into one relation per FD in the minimal basis.

• Schema is the union of the left and right sides.

• If no key is contained in an FD, then add one relation whose
schema is some key.

Example: 3NF Synthesis

• Relation R = ABCD.

• FD’s A B and A C

• These FD’s form minimal basis

• Decomposition:

AB and AC from the FD’s, plus AD for a key.

Why 3NF Synthesis Works

• Preserves dependencies: each FD from a minimal basis is
contained in a relation, thus preserved.

• Lossless Join: use the chase to show that the row for the
relation that contains a key can be made all-unsubscripted
variables.

• hard algorithmically – finding minimal bases.

