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We expect that after decomposition

• No anomalies and redundancies

• We can recover the original relation from the tuples in its 
decompositions

• We can ensure that after reconstructing the original relation 
from the decompositions, the original FD's hold



Desired properties of normalization: 
after decomposition

• No redundancies and anomalies

• Recoverability of information

• Preservation of original FD’s 



Recovering Information from a 
decomposition by join
• We have the relation R(A, B, C) and B C holds

Then we decompose R into R1 and R2 as follows:

Joining the two would get the R back. 

A B C

a b c

A B

a b

B C

b c



Recovering Information from a 
decomposition by join: 
lossless join
• Getting the tuples we started back is not enough to show that the 

original relation R is truly represented by the decomposition. 

Then we decompose R into R1 and R2 as follows:

A B C

a b c

a1 b c1

A B

a b

a1 b

B C

b c

b c1



Recovering Information from a 
decomposition by join: 
lossless join
• Getting the tuples we started back is not enough to show that the 

original relation R is truly represented by the decomposition. 

Then we decompose R into R1 and R2 as follows:

A B C

a b c

a1 b c1

A B

a b

a1 b

B C

b c

Because we decomposed along B C, 
we can conclude that c1=c  are the same 
so really there is only one tuple in R2



Recovering Information from a 
non-BCNF decomposition: 
lossy join 
• Note that the FD should exist, otherwise the join wouldn't reconstruct 

the original relation

• Example: we have the relation R(A, B, C) but neither B  A nor B C 
holds. 

Then we decompose R into R1 and R2 as follows:

A B C

a b c

a1 b c1

A B

a b

a1 b

B C

b c

b c1



• Since both R1 and R2 share the same attribute B, if we natural join 
them, we'll get:

• We got two bogus tuples, (a, b, c1) and (a1, b, c), which were not in the 
original relation

A B C

a b c

a b c1

a1 b c

a1 b c1

A B

a b

a1 b

B C

b c

b c1
⋈ =

A B C

a b c

a1 b c1

Recovering Information from a 
non-BCNF decomposition: 
lossy join 



Testing for a lossless Join

• If we project R onto R1, R2,…, Rk , can we recover R by 
rejoining?

• Any original tuple in R surely can be recovered from its 
projected fragments.

• So the only question is: when we rejoin, do we ever get 
back something we didn’t have originally?



Chase test for lossless join

• An organized way of proving that any tuple t in R1⋈ R2⋈ … 
Rk is in the original relation R

• We construct an example of the original relation in a special 
way, representing the decompositions by leaving the 
corresponding values unsubscribed 

• This representation is called a Tableau (example on the next 
page)



Example: Tableau

• Relation R(A, B, C, D) 

• Decomposed into:

R1 (A,D)

R2 (A, C)

R3 (B, C, D)

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

Tuple t = (a, b, c, d)

This row is a test case for R1(A,D). So we 
leave a and d unsubscribed, and label b1 
and c1 as arbitrary values in row 1



Example: Tableau

• Relation R(A, B, C, D) 

• Decomposed into:

R1 (A,D)

R2 (A, C)

R3 (B, C, D)

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

Tuple t = (a, b, c, d)

This row is a test case for R2(A,C). So we 
leave a and c unsubscribed, and label b2 
and d2 as arbitrary values in row 2



Example: Tableau

• Relation R(A, B, C, D) 

• Decomposed into:

R1 (A,D)

R2 (A, C)

R3 (B, C, D)

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

Tuple t = (a, b, c, d)

This row is a test case for R3(B,C,D). So 
we leave b. c and d unsubscribed, and 
label a3 as arbitrary value in row 3



Goal: show that after project and 
join no new bogus tuples
• We “chase” the tableau applying FD’s one-by-one

• Relation R(A, B, C, D) 

• FD’s: 

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

?

Tableau

A B C D

a b1 c1 d

a b2 c d2

a3 b c d
Project and join



Chase test 1/4

• Relation R(A, B, C, D) 

• FD’s: 

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d



Chase test 2/4

• Relation R(A, B, C, D) 

• FD’s: 

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d



Chase test 3/4

• Relation R(A, B, C, D) 

• FD’s: 

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d



Chase test: conclusion

• Relation R(A, B, C, D) 

• FD’s: 

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

Once we have an entire row 
unsubscribed, we know that the 
decomposition is lossless – chase 
test is complete



Chase test: conclusion

• Relation R(A, B, C, D) 

• FD’s: 

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

If you project this relation onto R1 (A,D), R2
(A, C), and R3 (B, C, D), and then join, you 
will get exactly the same original relation 
(you can check)



Chase test: conclusion

• Relation R(A, B, C, D) 

• FD’s: 

A B

B  C

CD  A

A B C D

a b1 c1 d

a b2 c d2

a3 b c d

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

The decomposition into R1 (A,D), R2 
(A, C), R3 (B, C, D) is a lossless
decomposition



Chase test: another example

• Suppose we have relation R(A,B,C,D) 
with FD BAD

• We have decomposed into 

R1(A,B), R2(B,C), R3(C,D) 

A B C D

a b c1 d1

a2 b c d2

a3 b3 c d

A B C D

a b c1 d1

a b c d1

a3 b3 c d

If you now project and join back, 
you will get bogus tuples, for 
example (a3, b3, c, d1) which 
was not in the original relation

The decomposition into R1{A,B}, 
R2{B,C}, R3{C,D} is a lossy
decomposition



Summary of the “Chase”

1. If two rows agree in the left side of a FD, make their right 
sides agree too.

2. Always replace a subscripted symbol by the 
corresponding unsubscripted one, if possible.

3. If we ever get an unsubscripted row, we know any tuple 
in the project-join is in the original (the join is lossless).

4. Otherwise, the final tableau is a counterexample.



Desired properties of normalization: 
after decomposition

• No redundancies and anomalies

• Recoverability of information

• Preservation of original FD’s 



Preservation of original FD’s

• Most BCNF decompositions preserve original FD’s

• There are special cases when the original relation cannot be 
decomposed into BCNF and preserve original FD’s 



BCNF decomposition which does not 
preserve FD’s
• There is one structure of FD’s that causes trouble when we 

decompose.

AB C and C B

• There are two keys, {A,B} and {A,C}

• C B is a BCNF violation, so we must decompose into AC, 
BC

• The difference here that a violating FD C B has B in RHS, 
and B is a part of a primary key 

• An attribute that is a part of some key is called a prime



Example: BCNF gone wrong

• Given R (client, bank, banker) with FD’s:

{client, bank}  banker - {client, bank}  is the key

banker  bank – violation

• We decompose into

R1 (banker, bank)

R2 (client, banker)

• However the original FD {client, bank}  banker is lost in 
this decomposition!



Example continued: at the 
moment of decomposition
• R (client, bank, banker)

• FD’s:

{client, bank}  banker

banker  bank

• Decomposition:

R1 (banker, bank)

R2 (client, banker)

R

client bank banker

A 1 X

A 2 Y

B 1 X

R1

banker bank

X 1

Y 2

{client, bank}  banker
banker  bank

R1

client banker

A X

A Y

B X

banker  bank No FD’s



Example continued: lossless 
decomposition

R

client bank banker

A 1 X

A 2 Y

B 1 X

R1

banker bank

X 1

Y 2

{client, bank}  banker
banker  bank

R2

client banker

A X

A Y

B X

banker  bank
No FD’s

⋈

The decomposition is 
lossless – requirement 
2 is satisfied



Example continued: no original 
constraint {client, bank}  banker

R1

banker bank

X 1

Y 1

R2

client banker

A X

A Y

B X

banker  bank
No FD’s

The only requirement is that 
banker uniquely identifies 
bank

Now we can insert into R1 and R2 without the original 
constraints, and that will allow to insert invalid values



Example continued: no original 
constraint {client, bank}  banker

R

client bank banker

A 1 X

A 1 Y

B 1 X

R1

banker bank

X 1

Y 1

{client, bank}  banker
banker  bank

R2

client banker

A X

A Y

B X

banker  bank
No FD’s

⋈

Invalid join! Tuple (A, 1, Y) 
should have been 
prevented by the original 
FD {client, bank}  banker



Another example – zip code

R (city, street, zipcode)

• FD’s:

{city, street}  zipcode

zipcode city

R

city street zipcode

A X 10

B X 20

A Y 11

B Y 20

R1

zipcode city

10 A

20 B

11 A

R2

street zipcode

X 10

X 20

Y 11

Y 20

It seems that we can 
still recover the 
original by join



Another example – concluded

R

city street zipcode

A X 10

A X 20

A Y 11

B Y 20

R1

zipcode city

10 A

20 A

11 A

R2

street zipcode

X 10

X 20

Y 11

Y 20

But we are now free 
to enter invalid 
values into R1 and R2 
because the original 
FD {city, street} 
zipcode is lost!

⋈



Relationship between normal 
forms

UNF

1 NF

2 NF

3 NF

BCNF



Relaxing normalization requirements: 
3NF

• 3rd Normal Form (3NF) modifies the BCNF condition so we 
do not have to decompose in this problematic situation

• An attribute is prime if it is a member of any key.

• X A violates 3NF if and only if X is not a superkey, and also 
A is not prime



Example: 3NF

• In our situation with FD’s AB C and C  B, we have key 
AB

• Thus A and B are each prime.

• Although C B violates BCNF, it does not violate 3NF

• So no decomposition is performed, and all the original FD’s 
are preserved



Desired properties of normalization: 
after decomposition

• No redundancies and anomalies

• Recoverability of information

• Preservation of original FD’s 



Desired properties of normalization: 
after decomposition: BCNF

• No redundancies and anomalies

• Recoverability of information

• Preservation of original FD’s 



Desired properties of normalization: 
after decomposition: 3NF

• No redundancies and anomalies

• Recoverability of information

• Preservation of original FD’s 



Decomposition into 3NF

• We can always perform a decomposition into 3NF relations 
with a lossless join and dependency preservation.

• Need to compute minimal basis for the FD’s:

1. Right sides are single attributes.

2. No FD can be removed.

3. No attribute can be removed from a left side.



Constructing a Minimal Basis

1. Split right sides.

2. Repeatedly try to remove an FD and see if the remaining 
FD’s are equivalent to the original.

3. Repeatedly try to remove an attribute from a left side 
and see if the resulting FD’s are equivalent to the 
original.



3NF Synthesis algorithm

• Compute minimal basis

• Split into one relation per FD in the minimal basis.

• Schema is the union of the left and right sides.

• If no key is contained in an FD, then add one relation whose 
schema is some key.



Example: 3NF Synthesis

• Relation R = ABCD.

• FD’s A B and A C

• These FD’s form minimal basis

• Decomposition: 

AB and AC from the FD’s, plus AD for a key. 



Why 3NF Synthesis Works

• Preserves dependencies: each FD from a minimal basis is 
contained in a relation, thus preserved.

• Lossless Join: use the chase to show that the row for the 
relation that contains a key can be made all-unsubscripted
variables.

• hard algorithmically – finding minimal bases.


