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ABSTRACT
Nowadays, textual databases are among the most rapidly growing collections of data. Some

of these collections contain a new type of data that differs from classical numerical or textual

data. These are long sequences of symbols, not divided into well-separated small tokens

(words). The most prominent among such collections are databases of biological sequences,

which are experiencing today an unprecedented growth rate. Starting in 2008, the “1000

Genomes Project” has been launched with the ultimate goal of collecting sequences of

additional 1,500 Human genomes, 500 each of European, African, and East Asian origin.

This will produce an extensive catalog of human genetic variations. The size of just the raw

sequences in this catalog would be about 5 terabytes.

Querying strings without well-separated tokens poses a different set of challenges,

typically addressed by building full-text indexes, which provide effective structures to index

all the substrings of the given strings. Since full-text indexes occupy more space than the raw

data, it is often necessary to use disk space for their construction. However, until recently,

the construction of full-text indexes in secondary storage was considered impractical due

to excessive I/O costs. Despite this, algorithms developed in the last decade demonstrated

that efficient external construction of full-text indexes is indeed possible.

This book is about large-scale construction and usage of full-text indexes. We focus

mainly on suffix trees, and show efficient algorithms that can convert suffix trees to other

kinds of full-text indexes and vice versa. There are four parts in this book. They are a mix

of string searching theory with the reality of external memory constraints. The first part

introduces general concepts of full-text indexes and shows the relationships between them.

The second part presents the first series of external-memory construction algorithms that

can handle the construction of full-text indexes for moderately large strings in the order

of few gigabytes. The third part presents algorithms that scale for very large strings. The

final part examines queries that can be facilitated by disk-resident full-text indexes.

KEYWORDS
full-text indexes, suffix trees, suffix arrays, external-memory algorithms, string

pattern matching
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CONTENTS 1

PREFACE

This book is about algorithms on strings. Strings are natural groupings of symbols into

sequences, where the sequence adds a special significance that unsequenced groupings of

symbols cannot convey. However, the book is not about strings in general, but about very

long strings that lack clearly defined fragments (tokens). In practice, such long strings arise

in music retrieval, Asian languages, and especially in databases of biological molecules,

where the sequences of DNA bases and aminoacids are stored as long undivided strings of

symbols. In addition, the book is not about algorithms that work on long strings directly,

but about algorithms that pre-process the raw strings into useful structures (indexes) and

enable efficient search and analysis. In essence, this requires the collections of strings to be

static in order to enable the pre-processing. As such, this book is about algorithms that

build and use indexes for very long static strings.

The goal of the book is primarily educational. We concentrate on the techniques

that are important and at the same time can be explained with reasonable economy and

efficiency, and which in turn can be converted into practical software applications.

The intended audience is senior undergraduate and graduate students in computer sci-

ence, as well as software engineers. A basic knowledge of algorithms and memory hierarchies

is required for reading this book. The ultimate goal is to provide the reader with new tools

for developing practical software solutions for applications such as computational linguis-

tics, music retrieval, and especially bioinformatics, where dealing with massive databases

of strings is a daily occurrence.

In the first chapter we start by describing several data structures that can be used

for indexing strings. At the end of this chapter we present the main challenge, namely

the excessive memory requirement for full-text indexes and propose to solve this problem

using external memory, typically magnetic disks. State-of-the-art construction algorithms

for external memory are presented in Chapter 2. The extension of these algorithms to the

case of input strings that do not fit into the main memory presents a major scalability

challenge, and possible solutions for this case are discussed in Chapter 3. In Chapter 4 we

discuss the efficiency of queries using disk-based indexes. Chapter 5 contains concluding

remarks and suggestions for future work.
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C H A P T E R 1

Structures for indexing
substrings

1.1 INDEXING SUBSTRINGS

We begin by developing a general intuition of how we could index a very long string. First,

we equip ourselves with some useful definitions.

Formally, we consider a string X = x1x2 . . . xN to be a sequence of N symbols (or

characters) drawn from a finite alphabet Σ. We assume that X is represented as an array of

characters. This allows to access any character at a given position i, 1 ≤ i ≤ N , in constant

time.

The consecutive sequence of symbols which starts at position i and ends at position

j is called a substring X[i, j] of X. We assume that j ≥ i, and thus all substrings are non-

empty strings and have a length of at least 1. To facilitate further discussion, we emphasize

two special types of substrings: suffixes and prefixes.

A substring [i, N ] that starts at position i and runs to the end of X is called suffix Si

of X. Note that we can uniquely identify each suffix by its starting position i. Thus S1 = X

and SN = xN . Prefix Pi is substring [1, i] of X. Thus P1 = x1, and PN = X. For example,

for X = banana: S4 = ana (suffix starting at position 4), and P3 = ban (prefix ending at

position 3).

If we can logically break X into small tokens (words), we then can sort these words

and store them in a sorted list, attaching to each word the corresponding position where

it occurs in X. In such a case, the search for a query word is facilitated, and we are

able to locate the position of a query word by performing logN comparisons. This is the

main principle behind an inverted index, which is widely used in information retrieval with

applications to large collections of natural language texts.

Consider, however, a scenario where X cannot be logically partitioned into small

words. Suppose that we would like to answer the following query on X: is a smaller string Q

contained insideX, and if yes, at what position can it be found? For example, ifX = banana

and Q = nan, the answer to this query is be position 3. The problem of locating a query

string Q inside an input string X is called exact pattern matching.

Now, suppose that X is very large and static, and that the number of exact matching

queries is large. This describes a typical scenario in the computational biology domain,

where very long sequences of symbols represent molecular chains of DNA bases.
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Figure 1.1: Indexing all different substrings of X = banana.

b a n a n a

1 2 3 4 5 6

Pos 6 4 2 1 5 3

Suffix a a a b n n

n n a a a

a a n n

n a a

a n

a

Figure 1.2: The sorted suffixes of X = banana.

A näıve algorithm that searches for Q in a raw string X of size N incurs O(N) string

comparisons, and in each string comparison up to |Q| character-to-character matchings,

resulting in a time complexity O(|Q|N). More sophisticated algorithms can find Q in X

in time O(N). Linear time is also the lower bound of these algorithms because we need to

read each character of X at least once. However, since we assume that X is static, we can

pre-process the string and prepare an index that facilitates a subsequent sub-linear search.

Similarly to the inverted index idea, we can build a sorted list of all different substrings

of X. There are at most N(N − 1)/2 distinct entries in this index: for each start position i,

there are N − i end positions. Each entry contains up to N characters. As a result, the total

size of such a substring index is O(N3). An example of the substring index for X = banana

is shown in Figure 1.1. We are now able to locate any substring performing O(log(N2))

string comparisons. However, even for the above string of 6 characters, the index contains

15 entries, with multiple position numbers per entry. Note, that some of these entries are
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redundant. For example, to locate substring ana, we need to locate only the suffixes that

contain ana as a prefix, namely ana and anana. This leads to a general idea: in order to

locate all different substrings of X, it is sufficient to build a sorted list of all suffixes of X.

An array of sorted suffixes for X = banana is shown in Figure 1.2. Here, the num-

ber of entries is N – one entry per suffix. The search is performed using O(logN) string

comparisons. However, the size of this sorted array is still quadratic in N . This is because

each character at position i is repeated N − i times. If we assume that we can read each

character directly from X in constant time, then we only need to know at what position

to read the character. Hence, we can replace each suffix in the sorted array by its starting

position. The array of sorted suffixes in Figure 1.2 is represented as an array of numbers

[6, 4, 2, 1, 5, 3]. When searching for Q = ana, we do a binary search using the array of suffix

start positions, but we compare Q to the corresponding characters from X. After locating

the first occurrence of ana, we collect the remaining occurrences by comparing ana to the

suffixes to the left and to the right in this array.

An array of suffix start positions, arranged according to the lexicographic order of

the suffixes that these positions represent, is called a suffix array. The suffix array is the

first representative of a family of indexes that allow us to index all different substrings.

These are called full-text indexes. Note that all different full-text indexes presented in this

chapter are based on the idea of sorted suffixes.

1.2 SUFFIX ARRAY

The suffix array of string X, introduced in the previous section, represents an index of all

distinct substrings of X. Using binary search, we can search for any query string Q in time

O(|Q| logN), matching up to |Q| characters to at most logN suffixes. Moreover, in order to

retrieve all occurrences of Q, we additionally check adjacent suffixes to the left and to the

right of the first occurrence in the suffix array. If the length of Q is large and if Q occurs

multiple times, we would like to enhance our index to avoid multiple scannings of the same

characters. However, at each position we start a character-by-character comparison from

scratch.

When considering the example in Figure 1.2, we notice that some adjacent suffixes

share common prefixes. If this information would be available during the search, we could

skip these characters, knowing that they are the same and we have already compared our

query string to them. For example, suffixes S4 = ana and S2 = anana have in common

prefix a, prefix an and prefix ana. The longest among these common prefixes is called

longest common prefix (LCP) of two strings. Now, for each suffix Si, represented by its

start position, we add the length of the LCP of Si with its predecessor in the suffix array.

As a result, we obtain an enhanced suffix array that represents all the sorted suffixes of

string X, where each suffix is represented by two numbers: its start position in X and the
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b a n a n a
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Suffix a a a b n n

n n a a a
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n a a

a n

a

Pos 6 4 2 1 5 3
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Figure 1.3: [Top] Sorted suffixes and longest common prefixes (LCPs) for X = banana.

[Bottom] A suffix array of X enhanced with the lengths of the LCPs.

a b a b c a b a b
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Suffix a a a a b b b b c

b b b b a a c a

a a c b b a b

b b a c b a

c b a a b

a a b b

b b a

a b

b

Pos 1 6 3 8 2 7 4 9 5

lcp 0 4 2 2 0 3 1 1 0

Figure 1.4: Example of a binary search in the suffix array for X = ababcabab and query

string Q = abca. During the binary search we calculated lcp(Q,S6) = 2 and lcp(Q,S8) = 2. All

the suffixes between S6 and S8 in this suffix array share a common prefix of length 2. This

allows us to compare characters in Q and characters in the remaining suffixes starting from the

third position in each of them.
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length of the LCP of this suffix with its predecessor. Figure 1.3 shows an example of such

an array for string banana. The length of the LCP is denoted by lcp in further discussion.

Using the concept of LCP, binary search can be performed in time O(|Q|+ logN).

For each suffix Si that is to be compared with Q, lcp(Si, Q) is computed. As long as lcp

is zero, only one character is compared during this negative comparison. Once the interval

for Q is located, say, between suffixes Si and Sj , and the value of lcp between both Q and

Si and Q and Sj is greater than zero, all the suffixes between Si and Sj share a LCP of

length a = min(lcp(Q,Si), lcp(Q,Sj)) due to the fact that the suffixes are lexicographically

sorted. Hence, for subsequent comparisons we can start comparing characters in Q starting

at position a+ 1. As such, at most 2|Q| characters are matched in total. An example for a

longer string is shown in Figure 1.4.

The LCP array itself helps to efficiently locate multiple occurrences. Once the first

occurrence is found, the rest is collected by considering all adjacent suffixes where lcp values

are at least |Q|, and no additional character comparisons are involved.

This concludes our description of the enhanced suffix array. In the next sections we

introduce more advanced indexing structures where sorted suffixes are organized into trees.

This adds additional functionality to our substring index.

1.3 SUFFIX TRIE

To introduce the idea of organizing suffixes into a tree, we sort all suffixes of a string

X = ababc, initialize the root of the tree, and add each suffix as a path of nodes, one

character per node, labeling each edge by the corresponding character. For instance, when

adding suffix S3 = abc we notice that its prefix ab already exists as a descendant of the

root node. Therefore, we do not add duplicate path ab, but instead we follow the existing

sequence of nodes until characters do not match anymore. At this point we create a new

child node for character c. The end node of a path for each suffix (a leaf node) is labeled with

the starting position of the corresponding suffix in X. The result of this suffix arrangement

for X = ababc is shown in Figure 1.5. This digital tree of suffixes is called a suffix trie. For

an input string over alphabet Σ, the maximum number of children for each trie node is

|Σ|, and all children of a particular node must represent distinct symbols. Beginning at the

root node, each of the suffixes of X can be found in the trie: ababc, babc, abc, bc and c.

Because of this organization, the occurrence in X of any query string Q can be found by

starting at the root and following matches down the trie edges until the query is exhausted.

If the entire string Q has been matched, then the corresponding positions can be read by

traversing the induced sub-tree in a depth-first manner.

Note that a similar arrangement does not work for string X = abab. In this case,

suffix S3 = ab is a prefix of another suffix, S1 = abab. As such, we do not have a separate

leaf for S3 = ab and its starting position 3 is lost. In order to solve this problem, for a

given input string X over alphabet Σ one additional character is appended to the end of
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Figure 1.5: The suffix trie for X = ababc. Since c occurs only at the end of X, it can serve as

a unique sentinel symbol. Note that each suffix of X can be found in the trie by concatenating

character labels on the path from the root to the corresponding leaf node.

X. This character is unique and not in Σ. This special character is called a sentinel. This

ensures that an additional edge will be generated for a sentinel character and thus each start

position will have its own leaf node. In our example for X = ababc, c serves as a sentinel due

to its unique occurrence at the end of the input string. Since, for our indexing purposes, we

treat the suffix trie as a tree of sorted suffixes, we consider the artificial sentinel character

added to the end of X as being lexicographically the smallest among all characters in Σ.As

such the sentinel essentially represents an empty string: ab is lexicographically smaller than

abab.

The trie provides an efficient solution to the substring containment problem, i.e.,

answering whether or not a query string Q is a substring of X. To answer this, it takes

exactly |Q| character comparisons. This is a significant improvement over the O(|Q|+

logN) result for suffix arrays. However, while the size of a suffix array is linear in N , the

size of a suffix trie is O(N2). This worst case situation arises, for example, when all the

paths in the trie are disjoint, as it is the case for input string abcde. This not only presents

a difficulty for handling a quadratic-size index for a very long input string X, but it also

makes the complete solution of the exact matching problem inefficient: after matching all

characters of a query string Q to a path in the trie, collecting all occurrences can take time

O(N2), since we need to traverse all the branches of the sub-tree induced by the original

path, character-by-character.

In the next section we show how we can modify this data structure to make it suitable

for solving our main problem. namely indexing substrings of a very long input string X.
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Figure 1.6: [Left] The suffix trie for X = ababc. [Right] The suffix tree for X = ababc. For

clarity, the explicit edge labels are shown. They are represented as ordered pairs of positions in

the actual suffix tree. Each suffix Si can be found by concatenating substrings of X on the path

from the root to leaf node Li.

1.4 SUFFIX TREE

The number of edges in the suffix trie can be reduced by collapsing paths containing unary

nodes into a single edge. This process yields a structure called the suffix tree. Figure 1.6

[Right] shows how the suffix trie for X = ababc looks like when converted to a suffix tree.

The tree still has the same general shape, but far fewer nodes. As before, the leaves are

labeled with the start position in X of the corresponding suffix, and each suffix can be found

in the tree by concatenating substrings associated with edge labels. The total number of

nodes in the suffix tree is constrained due to two facts: (1) there are exactly N leaves

and (2) the degree of any external node is at least 2. Therefore, there are at most N − 1

internal nodes in the tree. Hence, the maximum number of nodes is linear in N . However,

the problem of how to avoid an overall quadratic space is not yet resolved: the labels in the

suffix tree contain exactly the same number of characters as the suffix trie.

Assuming that we can read any character at a given position directly from X in

constant time, the substrings that label the edges of a suffix tree do not have to be stored

explicitly. Instead, they can be represented as an ordered pair of integers indexing their

start and end position in X. This implicit representation of substrings by their positions

makes the total space occupied by the suffix tree linear in N : now each edge label can be

stored in a constant space, and there are at most 2N nodes (and edges).

In a nutshell, a suffix tree is a tree of symbols for the suffixes of X, where edges are

labeled with the start and end positions of the substrings they represent in X. Note also

that each internal node in the suffix tree represents the end of the longest common prefix

for some pair of suffixes.
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Exact pattern matching using suffix trees can be performed very efficiently. In fact,

each query string Q can be located in X by following the path of symbols from the root of

the suffix tree for X. The substring containment problem, namely whether Q is a substring

of X, can be solved in time proportional to the length of query string Q and independent of

the size of the pre-processed input. An example of such a search is shown in Figure 1.7. In

order to report all occurrences occ of Q, the subtree induced by the end of the corresponding

path is traversed, which results in a search with an optimal performance of O(|Q|+ occ).

This result makes the suffix tree data structure the top candidate for our substring index.
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Figure 1.7: Examples of search in a suffix tree. The query strings ab and ba are found on the

paths from the root of the tree (bold lines). Once the query string is located, the positions –

(1, 3) for ab and (2) for ba – are obtained from the leaves of the corresponding subtrees.

Notably, the suffix tree index can be used to answer additional multiple combinatorial

queries about input string X. For example, with help of the suffix tree we can count the

total number of distinct substrings of the input string. This application is based on a

fundamental property of the suffix tree: every distinct substring of input string X is spelled

out exactly once along a path from the root of the suffix tree. Thus, an inventory of all the

distinct substrings of X can be produced by listing all the strings along each such path.

The total number of distinct substrings may be quadratic in input length, since in the

worst case there may be as many as O(N2) distinct substrings in an input of size N (i.e.,

there are that many ways to choose the pair of start and end positions). However, the total

number of all distinct substrings can be computed in time linear in N by simply adding up

the lengths of the edges of the suffix tree. For example, there are 12 different substrings in

string ababc, as can be calculated from the suffix tree in Figure 1.6 [Right].

Additional types of queries are discussed in Chapter 4 of this book. In fact, theoreti-

cally optimal bounds were obtained for many non-trivial tasks, such as computing matching

statistics, locating all repetitive substrings, and extracting palindromes. As we read on page

122 in the book by Gusfield [1997]: “Perhaps the best way to appreciate the power of suffix

trees is ... to spend some time trying to solve [these] problems without using suffix trees.
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0 root

1 4 7

1 ab

1 2 3

4 b

2 5 6

7 c

5

2 abc

3

3 c

5

5 abc

3

6 c

5
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Figure 1.8: An array representation of the suffix tree for X = ababc. Each node contains an

array of 4 child pointers. Note that not all the cells of this array are in use. The strings in the

nodes are the labels of the incoming edges. They are shown for clarity only and are not stored

explicitly.

Without this effort and without some historical perspective, the availability of suffix trees

may make certain problems appear trivial, even though linear-time algorithms for those

problems were unknown before the advent of suffix trees.”

From this inspiring note, we now move on to a more practical question: how can we

represent the suffix tree in (computer) memory?

1.5 REPRESENTATION OF A SUFFIX TREE

We discuss next the suffix tree representation in memory in order to estimate its space

requirements in practice.

It is common to represent the node of a suffix tree together with the information

about the incoming edge label. Each node, therefore, contains two integers representing

the start and end position of the corresponding substring of X. In fact, it is sufficient to

store only the start position of this substring as the end position can be deduced from the

start position of the child (for an internal node) or it is simply N (for a leaf node). In a

straightforward implementation, each node has pointers to all its child nodes. These child

pointers can be represented as an array, as a linked list or as a hash table.

If the size |Σ| of alphabet Σ is small, the child node pointers can be represented as an

array of size |Σ|. Each ith entry in this array represents the child node whose incoming label

starts with the ith character in the ranked alphabet. This is very useful for tree traversals,

since the corresponding child can be located in constant time. Let us first consider the tree
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space for inputs where N is less than the largest 4-byte integer, i.e. logN < 32. In this

case, each node structure consists of |Σ| integers for child node pointers plus one integer to

represent the start position of the edge-label substring. Since there are at most 2N nodes

in the tree, the total space required is 2N(|Σ|+ 1) integers. For the example where |Σ| = 4

(e.g. DNA alphabet), this yields 40N bytes of storage per N bytes of input. An array

representation of the suffix tree for X = ababc is shown in Figure 1.8.

For larger alphabets, an array representation of children is impractical and can be

replaced by a linked list representation. However, this requires an additional O(log|Σ|)

search time spent at each internal node during the tree traversal, in order to locate the

corresponding child. In addition, since the position of a child in a list does not reflect the

first symbol of its incoming edge label, we may need to store an additional byte representing

this first character. Another possibility is to represent child pointers as a hash table. This

preserves a constant-time access to each child node and is more space-efficient than the

array representation.

0 root

1

1 ab

1 4 2

2 b

2 6 3

3 c

5

6 abc

3 7

5 c

5

4 abc

3 5

7 c

5

a b a b c

1 2 3 4 5

Figure 1.9: Left-child right-sibling representation of the suffix tree for X = ababc. Each node

contains 1 pointer to its first child and 1 pointer to the next sibling.

The linked-list based representation known as a left-child right-sibling helps to further

reduce the space. In this implementation, the suffix tree is represented as a set of node

structures, each consisting of the start position of the substring labeling the incoming edge,

together with two pointers – one pointing to the node’s first child and the other one to its

next sibling. Recall that the end position of the edge-label substring is not stored explicitly,

since for an internal node it can be deduced from the start position of its first child, and

for a leaf node this end position is simply N . This representation of the node’s children

is of type linked list, with all its space advantages and search drawbacks. This suffix tree

representation is illustrated in Figure 1.9. Each suffix tree node consists of three integers.
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Array 

index

0 1 2 3 4 5 6 7

Starting 

character

a b c a c a c

First 

child

1 4 6 L L L L L

Start pos 1 2 5* 3 5* 3 5*

a b a b c
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Figure 1.10: Optimized left-child right-sibling representation of the suffix tree. All siblings are

represented as consecutive elements in the array of nodes. The special symbol ⋆ marks the bit

which indicates the last sibling. Each node contains only a pointer to the first child and the

start position of the incoming edge-label.

Since there are up to 2N nodes in the tree, the size of such a tree is at most 24N . Again,

for the better traversal efficiency, we store the first symbol along each edge label. Then the

total size of a suffix tree is at most 25N bytes for N bytes of input.

In an even more space efficient storage scheme, the pointers to sibling nodes are not

stored. Instead, the sibling nodes are placed consecutively in memory. The last sibling is

marked by a special bit. Now, each node stores only the start position of a corresponding

edge-label plus the pointer to its leftmost child. As before, each node may include an

additional byte representing the start symbol of its edge label. The size of such a tree node

is 9 bytes. For 2N nodes this yields a maximum of 18N bytes of storage. This representation

is depicted in Figure 1.10.

Another possibility to optimize the storage of the suffix tree is to consider each

suffix as a sequence of bits. Note that a string over any alphabet Σ can be reduced to

the binary alphabet by representing each character as a sequence of b = log|Σ| bits and

then concatenating these binary sequences.

For a binary alphabet, any internal node in the suffix tree has exactly two children.

This is because such a node cannot have more than two children, but also cannot have

less than two for it to be a suffix tree internal node. This allows using two child pointers

only (per node) and representing the entire suffix tree as an array of constant-sized nodes.

If the entire input string is considered as a sequence of bits, only the valid suffixes are

added to the tree. These are the suffixes starting at positions i such that i mod b = 0,

where b is the number of bits used to represent each character of Σ. As such, we have the

same number of tree nodes as before: the tree has one leaf node and one internal node per

inserted suffix. Figure 1.11 shows equivalent suffix trees over the original and the binary

alphabets for input string X = ababc. Each node has exactly two child pointers plus one

integer representing the start position of the incoming edge-label. Since there are exactly
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2N nodes in such a tree, the total size is 24N bytes. Note that this result is independent

of the size of the alphabet.
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Figure 1.11: [Left] Conventional suffix tree for X = ababc. [Right] Suffix tree for the same

input string. Here, each suffix is converted to a sequence of bits. Each character is encoded using

2 bits.

This binary representation of the suffix tree efficiently supports multiple string

queries. For example, in order to find occurrences of a pattern in string X, we can treat

the pattern as a sequence of bits, and match these bits along the path starting at the root,

without having the problem of locating the corresponding child of each internal node, as in

linked-list-based representations.

Note that in all representations described above the leaf nodes do not need to store

child pointers. Thus, we can store the leaf nodes in a separate array. Each element in the

array of leaf nodes stores only the start position of the corresponding substring since the

end position is implied to be N . In this case, the array representation occupies 24N bytes

(for |Σ| = 4), the “left-child right-sibling” representation occupies 20N bytes, its optimized

version occupies 12N bytes, and the suffix tree over the binary alphabet occupies 16N

bytes.

The suffix tree, theoretically, is a compact index, since it stores in linear-space the

total quadratic number of distinct substrings of X. However, this short survey of storage

requirements clearly demonstrates that, in practice, the suffix tree index is very space-

demanding. For example, for an input of 2 GB, the tree requires at least 24 GB of memory.

Further, for inputs exceeding in size the largest 4-byte integer, the start positions and the

child pointers need more than 4 bytes for their representation, namely logN bits for each

number. In practice, for the inputs of a size in the tens of gigabytes the tree can easily

reach 50N bytes. Recall that for the most space efficient representation of the suffix tree

discussed so far, for an input of size 6 GB, we need at least 72 GB of storage space. Real

inputs, however, may often be much larger than 6 GB. For example, the genome of Lilium
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longiflorum (trumpet lily) alone is 90 GB in size, and converting this input string into a

suffix tree requires more than 1 TB of memory.

Due to these excessive memory requirements, large suffix trees cannot be constructed

and stored entirely in RAM, and the power of suffix trees for very large inputs until recently

has remained largely unharnessed.
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Figure 1.12: The compressed suffix tree for X = ababc is shown below its conventional suffix

tree. It uses parenthesis to represent the tree topology, and the storage space is reduced to 5N

bits. However, queries on a compressed suffix tree are more complex and significantly slower

than queries on the conventional suffix tree.

There are two main directions in making suffix trees scalable for large inputs: the

index compression and the use of disk space.

1.6 POSSIBLE SOLUTIONS TO THE MEMORY PROBLEM

1.6.1 INDEX COMPRESSION

The recently developed parenthesis representation (or compressed suffix tree) allows the

entire suffix tree to be stored using only 5N bits. An example of the parenthesis representa-

tion of the suffix tree nodes for string X = ababc is shown in Figure 1.12. The parentheses

describe the tree topology. In order to store the information about the start position and

the depth of each tree node, a special array and its unary encoding are used to bring the

total memory requirements for the tree to 5N bits. The compressed suffix tree supports

all regular suffix tree queries with a poly-log slowdown. Compressed suffix trees and ar-

rays represent conceptually new self-indexing structures that do not require to access the

input string for a search or traversal. The resulting compressed self-index is smaller than
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the original input and must be kept entirely in the main memory during the search. For

example, the compressed suffix tree for 3 GB of Human genome occupies only 2 GB. These

impressive results show that the entire fully-functional suffix tree can be stored using a lot

less space than previously believed.

Thus, if the size of the main memory permits, a compressed full-text index can be

developed. However, the scalability of compressed suffix trees does not go beyond inputs

that are smaller than the main memory, since the index itself has a size in the same order

of magnitude as the input it is built upon, and it must be completely loaded into RAM to

be useful. If the compressed index outgrows the main memory and is accessed from disk,

then severe disk thrashing occurs due to very poor locality of references.

More problematic from a practical point of view is the fact that algorithms for search

in compressed indexes perform with a poly-log slowdown factor compared to the optimal

algorithms on uncompressed indexes. For example, the traversal of a compressed suffix tree

for 3 GB of Human genome is 90 times slower than the traversal of a conventional suffix

tree. The poly-log slowdown becomes even more prominent for larger input sizes.

Aiming to develop a practical solution, we do not consider compressed suffix trees

in this book, but rather concentrate on the idea of using external memory for both tree

construction and search.

1.6.2 USING DISK SPACE

Consider the idea of using disk space to store intermediate and resulting data structures

during the suffix tree construction and during queries, without ever loading the entire index

into main memory. Such a solution is quite attractive since disk space is cheap and virtually

unlimited: we can hold on disks several terabytes of data.

For the use of disk to be efficient we need to take into account some properties of

memory hierarchies.

There are several categories of memory in a computer ranging from small and fast

to cheap and slow. The access to data on a disk is 105-106 times slower than the access to

data in main memory. In order to model these speed differences in the design of algorithms

that use external memory, the external memory computational model, or disk access model

(DAM), was proposed. DAM represents the computer memory in the form of two layers

with different access characteristics: the fast main memory of a limited size M , and a slow

and arbitrarily large secondary storage memory (disk). In addition, for disks, it takes about

as long to fetch a consecutive block of data as it does to fetch a single byte. This is why

in the DAM model the asymptotic performance is evaluated as the total number of block

transfers between a disk and main memory.

Although DAM is a workable approximation, it does not always accurately predict

the performance of algorithms that use disk space. This is because DAM does not take

into account an important disk access property described below. The cost of a random disk
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access is the sum of the seek time, rotational delay and transfer time. The first two dominate

this cost in the average case, and as such are the bottleneck of a random disk I/O. However,

if the disk head is positioned exactly over the piece of data we want, then there are neither

seek time nor rotational delay components, but only transfer time. Hence, if we access data

sequentially on disk, then we pay the seek time and rotational delay only for locating the

first block of our data, but not for the subsequent blocks. The difference in cost between

sequential and random access becomes even more prominent if we also consider read-ahead-

buffering optimizations that are common in current disks and operating systems.

random, disk

sequential, disk

random, ssD

sequential, ssD

random, RAM

sequential, RAM

316 values/sec

52.2M values/sec

1924 values/sec

42.2M values/sec

36.7M values/sec

358.2M values/sec

Figure 1.13: Data transfer speed for different memories (from Jacobs [2009]).

In fact, the real time of data transfer from disk and from RAM differs significantly de-

pending on access patterns. Figure 1.13 represents the results of experiments, presented in

the recent literature, on data transfer speeds for different memories. These results notably

show that sequential disk access is even faster than random access to main memory. There-

fore if we design disk-based algorithms that are truly sequential, then we can potentially

outperform algorithms that incur many random accesses to main memory.

How do we efficiently construct a full text index using disk space? Note that we use

the disk not only to store our index, but also as an extension to the amount of RAM used

during its construction. Can we use the same algorithm as for the construction of an index

entirely in main memory? We explore answers to these questions in the next chapter.

1.7 SUMMARY

We presented suffix-based indexing structures for indexing substrings of long input strings:

suffix arrays, suffix tries and suffix trees. From these three, the most useful is the suffix tree

that can be efficiently used not only for exact pattern search but also for more sophisticated
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queries. We discussed the high memory requirements of suffix trees and possible solutions

to the memory problem: index compression and the use of disk space. For practical reasons,

we have chosen to use the disk space as the extension of working memory for construction

and querying of suffix trees. We discussed the requirements for disk-friendly suffix tree

construction, namely sequential access to disk-resident data.

1.8 BIBLIOGRAPHIC NOTES

Historically, the trie concept was introduced first. The term trie as a type of a digital

search tree for a set of strings was coined by Fredkin [1960] from information reTRIEval

for a table-based implementation, and the structure was also independently proposed by

de la Briandais de la Briandais [1959]. The term suffix tree first appears in the work by

McCreight [1976]. An early, implicit form is to be found in Morrison’s PATRICIA tree

(Practical Algorithm To Retrieve Information Coded In Alphanumeric, Morrison [1968]),

but it was Weiner [1973] who proposed to use it as explicit index. Suffix arrays were first

introduced by Manber and Myers [1993].

Numerous algorithms that use suffix trees can be found in the book by Gusfield [1997],

which also contains references to the original works.

The “left-child right-sibling” suffix tree representation was proposed by McCreight

[1976]. An even more space efficient storage optimization was proposed by Giegerich et al.

[2003]. Until 2007, the data structure by Giegerich et al. [2003] was known as the most

space efficient representation of the suffix tree. Then Sadakane [2007] fully developed the

compressed suffix tree and its balanced parenthesis representation. The use of the com-

pressed suffix tree index for querying massive inputs was studied in the work of Fischer

et al. [2008b]. More about compressed suffix trees can be found in recent papers by Fischer

et al. [2008a] and Russo et al. [2008].

The external memory computational model, or disk access model (DAM), was pro-

posed by Vitter and Shriver [1994].
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C H A P T E R 2

External construction of suffix
trees

In this chapter, we describe techniques for the efficient construction of disk-based full-

text indexes. We start by showing that different kinds of indexes can be transformed into

each other efficiently (Section 2.1). Therefore, a construction algorithm that is efficient for

one type of index works for all others, too. Then, in Section 2.2 we introduce a simplest

brute-force algorithm for the construction of suffix trees, and its optimization for external

memory. In Section 2.3 we present an efficient in-memory algorithm for suffix tree construc-

tion, the Ukkonen algorithm. We show that the nearly random accesses inherent in this

algorithm make it less suitable for external construction. Finally, in Section 2.4, we present

three algorithms specifically designed to build suffix trees directly on disk. We conclude

by describing the scalability problem of the presented algorithms, the problem which we

address in Chapter 3.

Before we begin, let us refresh some basic terms that we use in the description of

construction algorithms. For clarity, we assume that the input is represented as a single

string X of size N . However, all the techniques presented here can be trivially extended to

the case when the input consists of a set of strings of total length N .

We remind that suffix Si is a substring of X which starts at position i and ends

at position N . The longest common prefix LCPi,j is the prefix that is shared among two

suffixes Si and Sj . We denote the length of the LCP by lcp. A suffix array SA is an array of

lexicographically sorted suffixes of X, where each suffix is represented by its start position.

An LCP array is an array of lcp values for each suffix in suffix array with its predecessor

in the suffix array.

The suffix tree is a tree built from all the suffixes of X. Each edge in the suffix tree

is labeled by a corresponding substring of X which we call the edge-label. Recall that edge-

labels are implicit. Each is presented by two position pointers into input string X. Each

leaf node represents a suffix from X. For convenience we label it by the suffix start position.

The tree contains internal nodes and a leaf nodes. During the construction we distinguish

between explicit (already existing) and implicit internal nodes. An implicit node is a point

inside an edge, where a new internal node is to be created.
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A path in the suffix tree connects the root node with any given node and consists of a

sequence of symbols on concatenated edge-labels. The depth of any node of the suffix tree

is the total number of symbols on the path from the root to this node.
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Figure 2.1: Transforming a suffix tree into a suffix array. A part of the depth-first traversal

is shown with dotted arrows. The leaves accessed on the Euler tour represent lexicographically

sorted suffixes. The internal node of smallest depth, visited between two leaves, represents the

lowest common ancestor of the two leaves. It contributes lcp values in the LCP array.

2.1 TRANSFORMATION ALGORITHMS

In this section, we show that any of the full-text indexes presented in the previous chapter

can be constructed from one another, using an efficient external memory algorithm. To be

precise, we need to exclude the plain suffix array (Section 1.2) as it can be converted into a

suffix tree only if it is augmented with the LCP array. We remind that each suffix in such

an augmented suffix array is represented by two numbers: the start position of this suffix

in the input string and the length of the LCP with the previous suffix in the suffix array.

We begin with a construction of a suffix array SA (and the corresponding LCP array)

from a suffix tree ST . We assume that the children of each internal suffix tree node are

lexicographically sorted. If we perform a depth-first traversal of the tree, then the leaves of

the suffix tree will be accessed in an order that corresponds to the lexicographic ordering of

the suffixes that these leaves represent. Thus, the suffix array can be formed from the suffix

tree just by performing such a traversal. Visiting of the tree nodes during the depth-first

traversal is called an Euler tour. Furthermore, if we keep track on the depth of internal nodes
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visited during the Euler tour, then the internal node of the smallest depth that was visited

between two leaves representing suffixes Si and Sj is called the lowest common ancestor of

these two suffixes. The depth of this internal node is equal to the lcpi,j . The beginning of an

Euler tour on the suffix tree for string ababc is shown in Figure 2.1. Because there are O(N)

nodes in a suffix tree, the traversal is performed in linear time. Note, however, that in order

to be efficient from the disk-access point of view, the suffix tree should be layered on disk

in a manner that permits sequential access to tree nodes during an Euler tour. One of the

possibilities is to break the entire tree into a set of subtrees, where each subtree represents

suffixes that share some common prefix, and perform the tour by incrementally loading the

subtrees into main memory according to the lexicographic order of these prefixes.
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Figure 2.2: Transforming a suffix array into a suffix tree. The place of the internal node where

a new leaf is to be created is obtained from its lcp value. The nodes on the right-most path

(the border path) are accessed in the bottom-up fashion, simulating an Euler tour on the suffix

tree under construction. Hence, the conversion of a suffix array into a suffix tree is performed

in linear time.

The opposite transformation, constructing suffix tree ST for a given suffix array SA

with LCP array, proceeds by inserting the suffixes into the tree in lexicographic order.

Specifically, the suffixes are added to the suffix tree from left to right. A new leaf for suffix

Si always becomes a rightmost child of some node ν on the rightmost path of the partial

suffix tree. We call such a path a border path. Furthermore, the lcp value in the LCP array
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tells the depth of ν, where the new leaf for Si is to be added. Consider the example in

Figure 2.2. Here, a new leaf for suffix S3 becomes a rightmost child of some node on the

border path. The lcp1,3 = 2 tells us the depth of this internal node. All the nodes on the

border path can be kept in a stack with the leaf node on top. For a new leaf, nodes are

popped from the stack until the edge at the corresponding depth is reached. If needed, a

new internal node ν is created at depth lcp from the root by splitting the found edge. Both

the new node and the new leaf are pushed to the stack for subsequent processing.

By inserting in this order and by traversing the border path bottom-up we simulate

an Euler tour on the suffix tree nodes. Since such a traversal never accesses the same node

of the suffix tree more than twice, the entire conversion of the suffix array into a suffix tree

runs in time O(N). This transformation is efficient from a disk-access point of view, since

the suffix array is accessed sequentially, and since for a suffix tree we need only keep in

memory the stack of the nodes on the border path. All the other nodes can be kept on disk.

We have shown that different forms of full-text indexes (excluding the plain suffix

array) are equivalent, namely any of them can be constructed from another by a sequential

scan. All we need to do is to be able efficiently construct one of them from scratch. Next

we discuss the construction of a suffix tree directly from input string X.

2.2 BRUTE-FORCE ALGORITHMS

An intuitive method of constructing suffix tree ST is the following: for a given string

X we start with a tree consisting of only a root node. We then successively add paths

corresponding to each suffix ofX, from the longest to the shortest. This results in Algorithm

1. Assume that ST is the partial suffix tree after the insertion of all suffixes up to suffix Si−1.

The update operation inserts a path corresponding to the next suffix Si, updating partial

tree ST . In order to insert suffix Si into the tree we first locate some implicit or explicit

node corresponding to the longest common prefix of Si with some other suffix already in

the tree. To locate this node, we perform lcp character comparisons. After this, if the path

ends in an implicit internal node, it is transformed into an explicit internal node. In any

case, we add to this internal node a new leaf corresponding to suffix Si. Once the location

of the insertion point is found, we add a new child in constant time. Finding the end of

the LCP for the current suffix Si in the tree defines the overall time complexity of the

algorithm. The end of the LCP can be found in one step in the best case but in the worst

case in N steps for each of the N inserted suffixes. This leads to O(N2) total character

comparisons.

Nevertheless, based on this brute-force approach, the Hunt algorithm – the first prac-

tical external memory suffix tree construction algorithm – was developed. Hunt’s incremen-

tal construction has good locality of access to the tree during its construction. The output

tree is represented as a forest of several suffix trees. The suffixes in each such tree share a

common prefix. Each tree is built independently and requires scanning of the entire input
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Algorithm 1: Brute-force suffix tree construction.

input : string X of length N

output: suffix tree ST of X

1 initialize ST with the empty root node;

2 for i = 1, · · · , N do

3 ST=update(ST , Si);

4 end

5 return ST ;

Function update(ST , Si)

input : partial tree ST , current suffix Si

output: modified tree ST

1 match lcp characters of Si to the path in ST starting from the root;

2 if the path ends in explicit node then

3 add child leaf labeled by X[i+ lcp+ 1, N ];

4 end

5 else

6 create explicit node at depth lcp from the root;

7 add child leaf labeled by X[i+ lcp+ 1, N ];

8 end

9 return ST ;

string for each such prefix. The idea is that suffixes that have prefix, say, aa fall into a

different subtree than those starting with ab, ac and ad. Hence, once the tree for all suffixes

starting with aa is built, it is never accessed again. The tree for each prefix is constructed

independently in main memory. Then it is written to disk. The disk-optimized modification

of Algorithm 1 results in Algorithm 2.

The number of partitions p is computed as the ratio of the space required for the

tree of the entire input string, |STtotal|, to the size of the available main memory M , i.e.

p = |STtotal|/M . Then, if the number of suffixes in each partition is the same, the length

of the prefix for each partition can be computed as log|Σ| p, where |Σ| is the size of the

alphabet. This is true because we need to obtain p total prefixes of equal size by creating

p permutations of all available characters. For example, if Σ = {a, b, c, d}, and we want

to generate 16 equal partitions, the prefix for each partition would contain log4 16 = 2

characters. Note that the number of partitions grows exponentially on the prefix length.

This partitioning scheme works well for non-skewed input data but fails if for a particular

prefix there is a significantly larger amount of suffixes. This is often the case in DNA
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sequences with a large amount of repetitive substrings. In order to fit a tree for each

possible prefix into main memory, we can increase the length of the prefix. This, in turn,

exponentially increases the total number of partitions, and therefore, the total number of

input string scans.

Algorithm 2: The algorithm by Hunt.

input : string X of length N , main memory size M

output: forest of suffix trees STj (1 ≤ j ≤ p) of X on disk

1 compute total number of prefixes p such that each suffix tree for all suffixes with

prefix Pi fits M ;

2 for j = 1, · · · , p do

3 initialize STj for prefix Pj with the empty root node;

4 for i = 1, · · · , N do

5 STj=updatePrefixedSubtree(STj , Si,Pj);

6 end

7 write STj to disk;

8 end

Function updatePrefixedSubtree(STj , Si,Pj)

input : partial tree STj , current suffix Si, current prefix Pj

output: modified tree STj

1 if Si begins with prefix Pj then

2 match lcp characters of Si to the path in STj starting from the root;

3 if the path ends in explicit node then

4 add child leaf labeled by X[i+ lcp+ 1, N ];

5 end

6 else

7 create explicit node at depth lcp from the root;

8 add child leaf labeled by X[i+ lcp+ 1, N ];

9 end

10 return STj ;

11 end

The construction of the sub-tree for prefix ab and input string X = ababcababd is

shown in Figure 2.3. Note that each sub-tree is significantly smaller than the suffix tree for

the entire input string.
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Figure 2.3: The steps of building the sub-tree for prefix ab and input string X = ababcababd

with the Hunt algorithm.

We remark that we iterate through the input string as many times as the total number

of partitions. The construction of a tree for each partition is performed in main memory.

At the end, the suffix tree for each partition is written to disk. Note also that in order to

perform the brute-force insertion of each suffix into the tree, we need to randomly access

the input string X, which therefore has to reside in memory. Since the input string is at
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least an order of magnitude smaller than the tree, this method efficiently addresses the

problem of random accesses to the tree in secondary storage, but cannot be extended to

inputs that are larger than the main-memory allocated for X.
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Figure 2.4: The three first steps of the Ukkonen algorithm. An arrow indicates the active point

at the end of each iteration. Note that the extension of the edges ending at leaf nodes with the

next character is performed implicitly: the edge length is just extended by 1.

2.3 ALGORITHMS BASED ON SUFFIX-LINKS

We start by describing the linear-time construction algorithm by Ukkonen that works well in

main memory, but cannot be successfully extended to a disk version. This algorithm assumes

that random access to the input string and to the tree takes constant time. Unfortunately,

in practice, when some of these data structures outgrow the main memory and are accessed

directly on disk, the access time to disk-based arrays varies significantly depending on the

relative location of the data on disk. The total number of random disk accesses for this

algorithm is, in fact, O(N). This presents a significant challenge for large values of N .

2.3.1 THE UKKONEN ALGORITHM

For a given string X, we start with an empty tree (that is, a tree consisting just of a

root node) and then progressively build an intermediate suffix tree STi for each prefix

Pi = X[1, i], 1 ≤ i ≤ N . In order to convert a suffix tree STi−1 into STi, each suffix of

STi−1 is extended with the next character xi. We do this by visiting each suffix of STi−1

in order, starting with the longest suffix and ending with the shortest one (empty string).

The suffixes inserted into STi−1 may end in three types of nodes: leaf nodes, internal nodes

or in the middle of an edge (at a so-called implicit internal node). Note that if a suffix of

STi−1 ends in a leaf node, we do not need to extend it with the next character. Instead, we
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consider each leaf node as an open node: at each step of the algorithm every leaf node runs

till the end of the current prefix, meaning the end position on each leaf node will eventually

become N . Consider an example in Figure 2.4. It shows the three first iterations of the

suffix tree construction for X = ababcababd. In the second iteration, we implicitly extend

the a-child of a root node with b, and we add a new edge for b from the root (extending an

empty suffix).

Algorithm 3: The algorithm by Ukkonen.

input : string X of length N

output: suffix tree ST of X

1 initialize ST with the empty root node;

2 initialize activePoint=root;

3 for i = 1, · · · , N do

4 ST=updateTree(ST with activePoint, prefix Pi);

5 end

6 return ST ;

Thus, in each iteration, we need to update only suffixes of STi−1 that end at explicit

or implicit internal nodes of STi−1. We find the end of the longest among such suffixes

at the active point. The active point is the (explicit or implicit) internal node where the

previous iteration ended. If the node at the active point already has a child starting with

xi, the active point advances one position down the corresponding edge. This means that

all the suffixes of STi already exist in STi−1 as the prefixes of some other suffixes. In case

that there is no outgoing edge starting with the new character, we add a new leaf node as a

child of our explicit or implicit internal node (active point). Here, an implicit internal node

becomes explicit. In order to move to the extension of the next suffix, which is shorter by

one character, we follow the chain of suffix links. A suffix link is a directed edge from each

internal node of the suffix tree (source) to some other internal node whose incoming path

is one (the first) character shorter than the incoming path of the source node. The suffix

links are added when the sequence of internal nodes is created during edge splits.

To illustrate, consider the last iteration of the Ukkonen algorithm – extending an

intermediate tree for X = ababcababd with the last character d. We extend all the suffixes

of ST9 (Figure 2.5 (1)) with this last character. The active point is originally two characters

below the node labeled by ⋆ in Figure 2.5 (1), and the implicit internal node is indicated by

an arrow. The active point is converted to an explicit internal node with two children: one

of them is the existing leaf with edge label cababd and the other one is a new leaf for suffix

S6 (Figure 2.5 (2)). Then, we follow the suffix link from the ⋆-node to the ⋆⋆-node, and we

add a new leaf by splitting an implicit node two characters below the ⋆⋆-node. This results

in the tree of Figure 2.5 (3) with a leaf for suffix S7. Next, the suffix link from the ⋆⋆-node
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Function updateTree(ST , Pi)

input : tree ST for prefix Pi−1 with activePoint, current prefix Pi

output: tree ST for prefix Pi

1 currentSufEnd = activePoint;

2 currentChar = X[i];

3 done=false;

4 while not done do

5 if currentSufEnd is at explicit node v then

6 if v has no child starting with currentChar then

7 create new leaf;

8 end

9 else

10 advance activePoint down the corresponding edge;

11 done = true;

12 end

13 end

14 else

15 if the implicit node’s next char is not equal currentChar then

16 create new explicit node;

17 create new leaf;

18 end

19 else

20 advance activePoint down the corresponding edge;

21 done = true;

22 end

23 end

24 if currentSufEnd is at root then

25 done = true;

26 end

27 else

28 proceed to the next smaller suffix following a suffix link ;

29 currentSufEnd = NextSmallerSuffix;

30 end

31 end

32 activePoint = currentSufEnd;

33 return ST ;
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Figure 2.5: The last steps of the Ukkonen algorithm applied toX = ababcababd. In this cascade

of leaf additions ST9 is updated to ST10. The place for the next insertion is found following the

suffix links (dotted arrows).

leads us to the root node. Two characters along the corresponding edge we find the ⋆-node

and add to it a new edge starting with d, leading to a leaf node for suffix S8 (Figure 2.5

(4)). We continue in a similar manner and add the corresponding child starting with d both

to the ⋆⋆-node (Figure 2.5 (5)) and to the root (Figure 2.5 (6)). This illustrates how suffix

links help to find all the insertion points for new leaf nodes. There is a constant number of

steps per leaf creation, therefore the total amortized running time of the Ukkonen algorithm

is O(N).
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Algorithm 3 and function updateTree present a basic pseudocode of the Ukkonen

algorithm. Each call to updateTree converts STi−1 into STi. The call to NextSmallerSuffix

(line 29) finds the next suffix by following a suffix link.

If we look at Algorithm 3 from the disk access point of view, we see that locating

the next suffix requires a random tree traversal, one per created leaf. Hence, when tree

STi−1 is to be stored on disk, a node access requires an entire random disk I/O. This

access time depends on the location on disk of the next access point. Moreover, since the

edges of the tree are not labeled with actual characters, it is important that we access

randomly the input string in order to compare the current character with the characters

of X encoded as positions in the suffix tree edges. Unfortunately, this leads to a very

impractical performance, since the algorithm spends all its time moving the disk head from

one random disk location to another.

The access can be optimized. The higher tree nodes are accessed much more frequently

than the deeper ones. This gave rise to the buffer management method known as TOP-

Q. In this on-disk version of Ukkonen’s algorithm, nodes that are accessed often, have a

priority of staying in the memory buffer, while the other nodes are eventually read from

disk. This significantly improves the hit rate for accessed nodes when compared to rather

straightforward implementations. However, in practical terms, in order to build the suffix

tree for the DNA sequence of the Human chromosome I (approximately 247 MB), TOP-Q

runs for hundreds of hours and cannot be considered a practical method for indexing larger

inputs.

2.3.2 DISTRIBUTED AND PAGED SUFFIX TREES

An idea of using suffix links but processing the suffixes of X separately for each prefix,

resulted in the distributed and paged suffix tree (DPST) algorithm. As in the Hunt algo-

rithm, the suffixes of X are grouped by their common prefix whose length depends on the

size N of X and the amount of the available main memory. The number of suffixes in each

subtree is small enough for the tree to be entirely built in main memory. Therefore, ran-

dom disk access to the sub-tree during its construction is avoided. The main difference from

Hunt’s algorithm of Section 2.2 is that the sub-tree for each particular prefix is built in an

asymptotic time linear in N and not quadratic. In order to do so, the DPST algorithm uses

ideas similar to the Ukkonen algorithm described in Section 2.3.1. However, the Ukkonen

algorithm relies heavily on the fact that all suffixes of X are inserted in sequence, whereas

each sub-tree is built only for some suffixes of X, namely the ones that share the particular

prefix.

DPST introduces the idea of sparse suffix links (SSL) instead of regular suffix links.

A SSL in a particular subtree leads from each internal node vi with incoming path label

w to another internal node vj in the same sub-tree whose incoming path-label corresponds
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Figure 2.6: Difference between sparse suffix links [Left] and traditional suffix links [Right].

to the largest possible suffix of w found in the same sub-tree (or to the root if the largest

such suffix is an empty string).

We explain the difference between a sparse suffix link and a regular suffix link in the

following example. Suppose we have a sub-tree for a prefix a of X = ababcababdababe (see

Figure 2.6). In the regular suffix tree, the suffix link from the internal node with edge label

abab leads to the node with edge label bab. However, in the sub-tree for prefix a, there is no

suffix starting with bab. Thus, the longest suffix of abab that can be found in this sub-tree

is ab, and the SSL leads to the internal node with edge label ab.

Let us follow an example of the sub-tree construction for X = ababcababdababe and

prefix a in Figure 2.7. This sub-tree will contain only the suffixes of X starting at positions

1, 3, 6, 8, 11, 13. Thus, we need to insert only these six suffixes into the tree. First, we insert

suffix S1 by creating the corresponding leaf (Figure 2.7 (1)). Next, we add S3 by finding

that x2 = x4 and x3 6= x5. We split an edge and add a leaf for S3 (Figure 2.7 (2)). Now

it is the turn for suffix S6. The first four characters of S6 correspond to some path in the

tree, but x10 = d does not. Therefore, we add a leaf for S6 and create an internal node with

incoming path label abab. We see that the longest suffix of abab in this sub-tree is ab. We

create a sparse suffix link from the internal node for abab (marked by ⋆⋆ in Figure 2.8) to

the one for ab (marked by ⋆). When we create a new leaf out of the ⋆⋆-node for suffix S11,

we follow the SSL and create the same e-child from the ⋆-node (Figure 2.8 (5)).

The use of sparse suffix links when adding new leaves to the sub-tree allows to perform

the construction of each sub-tree in time linear in N . DPST runs in time O(Np) where p

is the total number of different prefixes. Despite the superior asymptotic internal running

time w.r.t. the previous brute-force algorithm, there was no significant improvement in
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Figure 2.7: Steps of the construction of the sub-tree for prefix a by the distributed and paged

suffix tree (DPST) construction algorithm for input string X = ababcababdababe.

performance, because the running time is dominated by disk I/Os and not by in-memory

operations.

2.4 DISK-OPTIMIZED ALGORITHMS

In this section we describe three suffix tree construction algorithms that were designed to

further reduce random access to the suffix tree being built.
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2.4.1 THE TOP DOWN ALGORITHM

An elaborated approach of the Top Down Disk based suffix tree construction algorithm

(TDD) takes the performance of the on-disk suffix tree construction to the next level.

Being still an O(N2) approach, TDD manages the memory buffers more efficiently and it

is a cache-conscious method, which performs very well for many practical inputs.

The first step of TDD is the partitioning of the input string in a way similar to that

of the algorithm by Hunt. Now, the tree for each partition is built as follows. The suffixes

of each partition are first collected into an array where they are represented by their start

positions. Next, the suffixes are grouped by their first character into character groups. The

number of different character groups corresponds to the number of children for the current

tree node. If for some character there is a group consisting only of one suffix, then this is

a leaf node and is immediately written to the tree (disk). If there is more than one suffix

in the group, the lcp value of all the suffixes is computed by sequential scans of X from

different random positions. An internal node at the corresponding depth is written to the

tree. After advancing the position of each suffix by lcp, the same procedure as before is

repeated recursively. The pseudocode of the TDD algorithm is given in Algorithm 4.

To illustrate the algorithm, let us observe several steps of the TDD suffix tree con-

struction, which are depicted in Figure 2.9. Suppose that we have partitioned all the suffixes

of X by a prefix of length 1. This results in four partitions: a, b, c and d. We show how

TDD builds the suffix tree for partition b. The start positions of suffixes starting with b are

{2, 4, 7, 9}. Since the prefix length is 1, the characters at positions {3, 5, 8, 10} are sorted
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Algorithm 4: The TDD algorithm.

input : string X of length N

output: forest of suffix trees STj (1 ≤ j ≤ p) of X on disk

1 create collection P of p equal-sized prefixes;

2 foreach Pj in P do

3 initialize STj for prefix Pj with the empty root node;

4 collect start positions of suffixes starting with Pj into array;

5 advance each start position by |Pj |;

6 assign suffixes to one of at most Σ character groups according to the first

character;

7 output to disk groups with 1 suffix as leaf nodes of STj ;

8 push groups with more than 1 suffix into stack;

9 while stack is not empty do

10 pop suffix group from stack;

11 compute lcp for all suffixes in this group by sequential scan;

12 output to disk internal node of STj at depth lcp;

13 advance position of each suffix by lcp;

14 assign suffixes to one of new character groups according to the first

character;

15 output to disk new groups with 1 suffix as leaf nodes of STj ;

16 push new groups with more than 1 suffix into the stack;

17 end

18 end

lexicographically (Figure 2.9 (1)). This produces three groups of suffixes: a-group: {3, 8}, c-

group: {5} and d-group: {10}. Since the c-group and the d-group contain one suffix each, the

suffixes in these groups produce leaf nodes and are immediately added to the tree (Figure

2.9 (1)). The a-group contains two suffixes, and is therefore a branching node. lcp3,8 = 2,

and therefore the length of the child starting with a equals 2. At this depth, the internal

node (Figure 2.9 (2)) branches at positions {5, 10}. After sorting this results into two leaf

nodes: the children starting with c and d respectively (Figure 2.9 (3)).

The main distinctive feature of the TDD construction is the order in which the tree

nodes are added to the output tree. Observe that the tree is written in a top-down fashion,

and that the nodes that were expanded in the current iteration are not accessed anymore.

This reduces the number of random accesses to the partially built tree and the new nodes

can be written directly to the disk. The number of random disk accesses is O(p) as in Hunt

et al.’s algorithm. However, the size of each partition may be much bigger than before since
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string X = ababcababd.
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now the main memory buffer for the suffix tree data structure does not have to hold an

entire sub-tree.

This pattern of accessing the tree was shown to be very efficient for cached archi-

tectures of modern machines. It was even shown that the TDD algorithm outperforms the

linear-time algorithm by Ukkonen for some inputs in the case where all the data structures

fit the main memory. We remind that the reason for this is that the completely random

access to main memory is slower than the sequential access to modern disks (see diagram in

Figure 1.13). For the same input of 250 millions of symbols (Human chromosome I), it takes

100 hours to construct the suffix tree using the optimized Ukkonen algorithm, about 1.5

hours using the suffix-by-suffix insertion of Hunt, while TDD builds the tree in 20 minutes.

As before, the algorithm performs massive random accesses to the input string when

it does the character-by-character comparisons starting at different random positions. The

input string for the TDD algorithm cannot be larger than the main memory.

Another problem of TDD is the suffix tree on-disk layout. The trees for different

partitions are of different sizes, and some of them can be significantly larger than the

main memory. This poses some problems when loading the subtree into main memory for

querying. If the entire subtree cannot be loaded into and traversed in the main memory,

the depth first traversal of such a tree requires multiple random accesses to different levels

of on-disk nodes.

2.4.2 THE PARTITION-AND-MERGE ALGORITHM

Oversized subtrees caused by data skew can be eliminated by using a set of variable-length

prefixes. In practice, the initial prefix size is chosen so that the total number of prefixes p

will allow to process each of the p sub-trees in main memory. For example, we can hold

in our main memory in total Tmax suffix tree nodes. The counts in each group of suffixes

sharing the same prefix are computed by a sequential scan of input string X. If a count

exceeds Tmax, then we re-scan the input string from the beginning, collecting counters for

an increased prefix length. Based on the final counts, none of which exceeds Tmax, the

suffixes are combined into approximately even-sized groups. As an example consider the

case when suffixes starting with prefix ab occur twice more often than the suffixes starting

with ba and bb. We can combine suffixes in partitions ba and bb into a single partition b

with approximately the same number of suffixes as contained in partition ab. The maximum

number of suffixes in each prefix partition is chosen to ensure that the size of the tree for

suffixes which share the same prefix will never exceed the main memory. This is done in

order to ensure that each such subtree can be built and queried in main memory.

This new partitioning scheme was used in the Trellis1 algorithm. The main innova-

tive idea of this method is the combination of the prefix partitioning and the horizontal

partitioning of the input into consecutive substrings, or chunks. In theory, the substring

1Trellis stands for External Suffix TRee with Suffix Links for Indexing Genome-ScaLe Sequences.
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partitioning does not work for any input, since the suffixes in each substring partition do

not run until the end of the entire input string. However, this horizontal partitioning works

for most practical inputs. Consider for example the Human genome – a DNA sequence of

about 3 GB in length. In fact, there is not a single string representing Human genome, but

rather 23 sequences of DNA in 23 different Human chromosomes, with the largest sequence

being only about 247 MB in size. Those chromosome sequences represent natural partitions

of the entire genome.

If the size of each natural chunk of the input does not allow us to build the suffix tree

for it entirely in main-memory, then the chunk can be split into several slightly overlapping

substrings. We append to the end of each such substring except the last one, a small “tail”

– the prefix of the next partition. The tail of the partition must never occur as a substring

of this partition. It serves as a sentinel for the suffixes of the partition, and its positions are

not included into the suffix tree of the partition. In practice, for most real-life sequences,

the length of such a tail is negligibly small compared to the size of the partition itself.

After partitioning the input into chunks of appropriate size, Trellis builds an indepen-

dent suffix tree for each chunk. It does not output the entire suffix tree to disk, but rather

writes to disk the different sub-trees of the in-memory tree. These sub-trees correspond to

the different variable-length prefixes. Once trees for each chunk are built and written to

disk, Trellis loads into memory the subtrees for all the chunks that share the same pre-

fix. Then it merges these subtrees into the shared-prefix-based subtree for an entire input

string. The pseudocode of the Trellis algorithm is shown in Algorithm 5.

As an example, let us apply the Trellis method to our input string X = ababcababd.

Let the collection of prefixes for a prefix-based partitioning be {ab, ba, c, d}. We partition X

into two substrings X1 = abab with “tail” c and X2 = cababd. Note the overlapping symbol

c that is used as a sentinel for suffixes of X1. We build in memory the suffix tree for X1,

shown in Figure 2.10 (1), and output it to disk in the form of two different subtrees: one

for prefix ab and the second for prefix ba. The same procedure is performed for X2 (Figure

2.10 (2)). Then, we load into main memory the subtrees for, say, prefix ab and we merge

those sub-trees into the common ab-subtree for the entire X.

The merge of subtrees for different chunks is performed by a straightforward

character-by-character comparison, which leads to the same O(N2) worst-case number of

character comparisons as the brute force algorithms described before. If we have k chunks

and p prefixes in the variable-length prefixes collection, the number of random disk accesses

is O(kp). Since both k and p depend on the length of the input string N , the execution

time of Trellis grows quadratically with the increase ofN . During the character-by-character

comparison in the merge step, the input string is randomly accessed at different positions

all over the input string. Therefore, the scalability of Trellis does not go beyond the size of

the main memory designated for the input.
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Figure 2.10: The steps of the Trellis algorithm applied to input string X = ababcababd. (1).

Building the suffix tree for substring X1 = abab(c). (2). Building the suffix tree for substring

X2 = cababd. (3). Merging the sub-trees for prefix ab. The total size of the tree structures at

each step allows to perform each step in main memory.
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Algorithm 5: The Trellis algorithm.

input : string X of length N

output: forest of suffix trees STj (1 ≤ j ≤ p) of X on disk

1 partition X into k substrings X1, · · · , Xk such that suffix tree for each substring

fits in RAM;

2 create collection P of p variable-sized prefixes;

3 for j = 1, · · · , k do

4 build suffix tree ST (Xj) by Ukkonen algorithm (see Algorithm 3);

5 foreach Pj in P do

6 find in ST (Xj) the sub-tree starting with Pj ;

7 write this sub-tree into a separate file on disk;

8 end

9 end

10 foreach Pj in P do

11 load from disk into RAM all sub-trees starting with Pj ;

12 merge sub-trees into 1 sub-tree for prefix Pj ;

13 write the full sub-tree for Pj back to disk;

14 end

2.4.3 THE MERGE SORT ALGORITHM

Another simple but powerful approach to construct suffix trees on disk is based on external

memory multi-way merge sort. The DiGeST2 algorithm scales for larger inputs since it does

not use the prefix-based partitioning, but rather outputs a collection of small suffix trees

for the different sorted lexicographic intervals.

The main ideas of DiGeST are based on the following observation. The locality of

references during the suffix tree construction can be significantly improved if we insert

sorted suffixes into the suffix tree. In this case, if we collect and write to disk the suffix tree

for all suffixes in a given lexicographic interval, then we do not access the completed part

of the tree anymore. Thus, the first step is to obtain an array of lexicographically sorted

suffixes, a suffix array.

Once we obtain an array of lexicographically sorted suffixes we can insert each suffix

into a growing suffix tree. In order to insert the next suffix, one internal node is created at

depth lcp from the root of the suffix tree, and a new leaf is added. This process is performed

in main memory. Once the suffix tree for a given lexicographic interval is complete, it is

written to disk and never accessed again.

2DiGeST stands for Disk-based Generalized Suffix Tree.
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The efficient external memory sorting of suffixes is based on the paradigm of two-phase

multi-way merge-sort. Conventional multi-way merge sort works as follows. It partitions an

input array of values into k sub-arrays. The size of each sub-array is bounded by the

available main memory. In the first phase, the algorithm sorts the elements of each sub-

array (using any efficient main-memory sorting algorithm). The sorted sub-arrays, called

runs, are written to disk. The main idea of multi-way merging is to merge the sorted lists

from multiple runs at the same time. The algorithm allocates k input buffers, one input

buffer for each active (unfinished) run, and one output buffer. Each buffer has a pointer to

the next element of the corresponding run. Then, all the currently pointed values of each

run are compared, and the smallest (belonging to a buffer, say, i) is transferred to an output

buffer. The pointer in buffer i is advanced by 1. If buffer i is now exhausted of elements,

we read the next blocks from the corresponding run. Once no data remains in that run, it

is considered no longer active. When the output buffer is full, it is written to the end of

the output file. When only one active run remains, the algorithm finishes up by copying all

the remaining elements to the end of the output file.

A similar merge-sort approach is used for DiGeST. Recall that unlike the conventional

sort applied to numbers or short strings, we are sorting suffixes, which are long overlapping

strings. This in general requires special sorting and merging techniques developed for suffix

sorting. However, in the suffix merge step DiGeST performs a direct character-by-character

comparison of suffixes from different partitions, trading the efficiency of suffix sorting for a

better pattern of random disk I/Os.

To perform multi-way merge sort, DiGeST first partitions the input string into k

chunks. The suffixes in each chunk are sorted using any in-memory suffix sorting algorithm.

The suffix array for each chunk is written to disk. To each position in this suffix array a

short prefix of the suffix is attached. These prefixes significantly improve the performance

of the merging phase.

After sorting the suffixes in each chunk, consecutive pieces of each of the k suffix

arrays are read from the disk into input buffers. As in the regular multi-way merge sort,

a “competition” is run among the top elements of each buffer and the “winning” suffix

migrates to an output buffer organized as a suffix tree. When the output buffer is full, it is

emptied to disk. In order to determine the order of suffixes from different input chunks, we

first compare the prefixes attached to each suffix start position. Only if these prefixes are

equal, we compare the rest of the suffixes character-by-character. This comparison incurs

random access to the input string, and therefore it requires that the input string be kept

in main memory.

Due to the character-by-character comparison of the suffixes, DiGeST runs in O(N2)

internal time. The same comparison is performed in order to calculate the longest com-

mon prefix of the current suffix with the last suffix previously inserted into the tree. The

calculated lcp determines the place where the internal node is created, and a new leaf for
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Figure 2.11: The steps of the DiGeST algorithm applied to input string X = ababcababd. (1).

Building the suffix array for substring X1 = abab(c). (2). Building the suffix array for substring

X2 = cababd. (3). Merging the suffix arrays by uploading them sequentially from disk. Once the

output suffix tree fills the entire output buffer, it is written to disk as a sub-tree corresponding

to a particular lexicographic interval.
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each suffix is added as a child of this internal node. This way we build the suffix tree in the

output buffer.

Before writing the output buffer to disk, the lexicographically largest suffix in this

tree is added to a collection of “dividers” which serve locating multiple trees on disk. Since

the output buffer is of a pre-calculated size, all trees are of equal size, and thus, the problem

of data skew is completely avoided. Further, each tree is small enough to be quickly loaded

into the main memory to perform a search or comparative analysis. The pseudocode of

DiGeST is presented in Algorithm 6.

Algorithm 6: The Digest algorithm.

input : string X of length N

output: forest of suffix trees of X on disk, divided by lexicographic intervals

1 partition X into k substrings X1, · · · , Xk such that suffix array for each

substring fits in RAM;

2 for j = 1, · · · , k do

3 build plain suffix array SA(Xj);

4 write SA(Xj) into a separate file on disk;

5 end

6 mergePartitions()

While DiGeST still requires the input string to be in main memory, from an external

memory point of view it is very efficient: the algorithm performs only two scans over the

disk data and, furthermore, accesses the disk mainly sequentially.

2.5 SUMMARY

In this chapter, we presented the state-of-the-art algorithms for the construction of suffix

trees on disk. The best performing algorithms – TDD, Trellis and DiGeST – are designed

to access the suffix tree sequentially. This allows to keep the suffix tree on disk during its

construction. In fact, these algorithms do not produce a complete suffix tree for the input

string X, but rather they build a forest of small suffix trees. Each small tree in this forest

is identified by a prefix that all its suffixes share, or by a lexicographic interval to which

all its suffixes belong. To perform traversals efficiently, the tree should be small enough in

order to load it entirely into RAM, since traversals on disk would incur massive random

I/Os.

Unfortunately, the scalability of all the presented algorithms does not go beyond input

strings that fit the main memory, because all the algorithms perform reading characters

of the input string from random locations. Suffix tree construction for larger strings is the

topic of the next chapter.
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Function mergePartitions

input : k suffix arrays SA(Xj) for sub-strings of X on disk

output: forest of suffix trees of X on disk, divided by lexicographic intervals

1 allocate k input buffers and 1 output buffer in form of a suffix tree STi;

2 for j = 1, · · · ,K do

3 read part of SA(Xj) from disk into buffer j;

4 end

5 create heap of size k;

6 read first element of each input buffer into heap;

7 while heap is not empty do

8 pop the smallest suffix Sk of Xj from the top of heap into output buffer;

9 find lcp of this suffix with the last inserted suffix;

10 add to STi an internal node at depth lcp and a leaf node for suffix Sk;

11 if output buffer is full then

12 record the smallest and the largest suffix in STi;

13 write STi to disk;

14 initialize a new tree STi+1;

15 end

16 if input buffer j is empty and not the end of SA(Xj) then

17 fill input buffer j with the next suffixes;

18 end

19 if input buffer j is not empty then

20 insert next suffix Sm from input buffer j into heap;

21 end

22 end

2.6 BIBLIOGRAPHIC NOTES

The transformation algorithms are described in Meyer et al. [2003].

The brute-force algorithm for suffix tree construction was adapted to disk settings by

Hunt et al. [2001]. Apostolico and Szpankowski [1992] have shown that on average the brute-

force construction requires O(N logN) time. Their analysis was based on the assumption

that the symbols of X are independent and randomly selected from an alphabet according

to a given probability distribution.

Linear-time algorithms for suffix tree construction in RAM were developed by Weiner

[1973], McCreight [1976], and Ukkonen [1995]. Giegerich and Kurtz [1997] have shown that

all the three are based on similar algorithmic ideas. The poor locality of accesses in these

algorithms let Navarro and Baeza-Yates [2000] to conclude that the suffix tree in secondary
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storage is inviable. The improvement of the random access behavior of these algorithms

was studied by Bedathur and Haritsa [2004], who proposed the TOP-Q algorithm. A com-

bination of the Ukkonen algorithm and Hunt’s idea of processing suffixes of X separately

for each prefix, resulted in the Distributed and Paged construction proposed by Clifford

and Sergot [2003].

The Top Down Disk based suffix tree construction algorithm TDD was introduced in

Tian et al. [2007]. The base of the method is the combination of the wotdeager algorithm of

Giegerich et al. [2003] and Hunt et al.’s prefix partitioning described above. Phoophakdee

and Zaki [2007] proposed the Trellis partition-and-merge method. The DiGeST algorithm

that performs essentially the multi-way merge-sort of suffixes was proposed by Barsky et al.

[2008].
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C H A P T E R 3

Scaling up: when the input
exceeds the main memory

All the suffix tree construction algorithms described so far reduce random access to the

suffix tree. Once the input string outgrows the main memory, these algorithms suffer severe

performance degradation. The reason for this is that, by design, they assume that massive

random access to the input string is performed in RAM. Once the input string is on disk,

this translates into a prohibitive number of random disk I/Os. As experiments show, the

construction of suffix trees using these algorithms for inputs that are just slightly larger

than the main memory may take weeks or months.

The problem of efficiently constructing suffix trees for very large strings is particularly

important when the input string does not fit in main memory. This is, because if the entire

input string is in main memory, then one might be able to find efficient algorithms that

scan and search the string without using a (disk-based) index. In such a case, the overhead

of constructing and handling the index may not pay off. Therefore, it is for strings that do

not fit in main memory that such an index will be the most beneficial.

The problem is difficult, because we need to randomly access the input string many

times during the construction of the edges of the suffix tree. Recall that the edges of the

suffix tree are not explicitly labeled with the actual, corresponding, substrings, but instead

contain pointers to the input string. Hence, if an algorithm requires a comparison of the

characters in the input string with the characters of an edge-label, we inevitably need to

access the input string at multiple arbitrary locations.

In the following, we present two algorithms that are specifically designed to handle

inputs in excess of RAM. First, in Section 3.1 we present an algorithm that performs a

tiled construction of suffix trees. Next, in Section 3.2, we present an extension of multi-

way merge sort for the case of oversized inputs, based on pairwise partition sorting. These

algorithms are able to handle inputs several times larger than main memory.

3.1 THE WAVEFRONT ALGORITHM

The Wavefront algorithm is designed to build a suffix tree by keeping the input string on

disk, and by performing numerous sequential scans on it. Despite the multiple scans, this

algorithm performs better for oversized strings than any algorithm described so far, because



3.1. THE WAVEFRONT ALGORITHM 45

of the limiting factor inherent in all the previous algorithms, namely the number of random

disk I/Os to the input string. The pseudocode of Wavefront is given in Algorithm 7.

Algorithm 7: The Wavefront algorithm.

input : string X of length N on disk;

b - Size of the memory block to hold part of X;

M - size of memory to hold the nodes of one sub-tree

output: forest of suffix trees on disk

1 create collection P of p variable-sized prefixes s.t. ST for each prefix fits in M ;

2 foreach prefix Pr in P do

3 generate Front(Pr) array of suffix start positions;

4 set offset for each suffix in Front(Pr) to 0;

5 end

6 foreach prefix Pr in P do

7 buildSuffixTreeWavefront(Front(Pr),X,b);

8 end

Wavefront builds a forest of sub-trees. All the suffixes in each subtree STi share

the same prefix Pi. First, the algorithm collects some statistics about the input string to

ensure that the subtree for each prefix can be built entirely in RAM. For this, a collection

of variable-length prefixes is created by a procedure similar to the one described for the

Trellis algorithm in Section 2.4.2. At the end of this operation, for each prefix Pi we have

an array of start positions for suffixes that start with Pi.

To illustrate, let us consider a sample input string X = ababcababd. At the end of the

prefix set building step, we have for prefix P1 = a an array of suffixes which start with a:

[S1, S3, S6, S8]. Subtree ST1 will contain the leaf nodes for each of these suffixes.

The construction of STi is performed independently for each prefix Pi. The memory

in Wavefront is holding one block of size b of the input string and the subtree for a given

prefix, and hence the working memory has a constant size. The insertion of suffixes into the

tree is performed as in the brute-force algorithm. However, the limitations here are that

we can see only b characters of X at each step. Further, we have a partially built suffix

tree that does not contain actual characters on its edge-labels, but random positions in

the input string. The main idea is to build STi by incrementally updating its topology,

based only on the available information about b characters and the topology known from

the previous iteration. And so, the update of STi is performed in waves. After each wave,

there are unresolved pieces of the tree topology below some nodes, which are stored in a

front array (hence the Wavefront name of the algorithm). For each wave, the corresponding

suffixes are inserted into STi, and at each suffix start position we know only its prefix of
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Function buildSuffixTreeWavefront
input : array Front for a given prefix; block size b; string X on disk

output: suffix trees for a given prefix on disk

1 initialize empty tree ST ;

2 set node link for each suffix in Front to the root node of ST ;

3 for i = 1, · · · , N − b do

4 Bi = X[i · · · i+ b] - load mappings from positions i to i+ b to actual

characters of X into RAM;

5 foreach suffix Sj in Front do

6 read startPosition, offset, and link node v of Sj from Front;

7 match characters of X starting from j+offset to edge labels of ST below

v;

8 while the matching characters in ST are known from Bi do

9 advance offset;

10 end

11 if there is a mismatch with a character which is known from Bi next to

node u then

12 if u is implicit then

13 make it explicit internal node;

14 end

15 add child to u with the leaf node for Sj ;

16 remove Sj from Front array;

17 end

18 if the next character of X cannot be compared to character of ST (not in

Bi) then

19 if u is implicit then

20 make it explicit internal node;

21 end

22 link Sj in Front array to u;

23 end

24 end

25 end

length b. With each wave, the entire input string is scanned. The edge-labels of the partially

built tree, however, contain only actual labels for a current input block Bi.

Let us examine the construction of ST1 in our example. Suppose that X is very large,

and that we cannot hold in main memory more than 3 characters of X at a time. Two

waves of the algorithm are presented in Figures 3.1 and 3.2. Each figure represents one
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Figure 3.1: The first wave of the Wavefront algorithm. Only the 3 first characters of X are

accessible. The topology of the edges labeled by the positions of these first 3 characters are

resolved. The dotted line represents the wavefront array. In the next wave, only unresolved

nodes in the wavefront array are observed and resolved.

wave in the construction of the suffix tree for all the suffixes of string X = ababcababd that

start with prefix a. In the first wave, only characters at positions from 1 to 3 are known

for the edge-labels of the tree. We insert each suffix in order by scanning each suffix in

[S1, S3, S6, S8] at most b = 3 characters in each iteration. We build the suffix tree based on

our knowledge of the first 3 characters on its edge-labels. For example, for suffix S2 the

complete topology is found already after the first iteration, since this suffix differs from

S1 already in its third character. For suffix S6 we do not know the character at position

4 of the edge-label, and thus we cannot resolve the topology of the tree for this suffix.

The temporary internal node v∗ is created. This node is added to the front array, and the

topology below it is resolved in the next wave. Once the second block of the input string

is in memory and we compare unresolved edge labels, this node will be converted into a

complete node v, as shown in Figure 3.2.

The topology of the tree is resolved from top to bottom, with the wavefront array of

implicit nodes moving down the tree. The topology part closer to the root node is resolved

first. This method of top-down construction is possible due to the following observation:

the positions that label an edge-label of any suffix tree node are always greater than the

positions on the edge-label of its parent. This holds for the brute–force suffix insertion,

which was used in this algorithm, i.e. when each current suffix Sj starts to the right of any

previously added suffix Si (j > i).
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Figure 3.2: The second wave of the Wavefront algorithm. The second block of the input string

is in main memory. The corresponding edges and nodes are updated.
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This fact is demonstrated in Figure 3.3. When we add to the tree a new suffix Sj , the

incoming edge of leaf for suffix Si is split to create a new internal node u and a new leaf

for Sj : u is now a parent of two children: the previous leaf for suffix Si and the new leaf

node for Sj . The positions on the incoming edge of a leaf node for Si are greater than the

positions on the incoming edge of node u, since both these labels represent two consecutive

parts of the same suffix Si. Since the next suffix Sj starts after Si (j > i by construction)

and since it shares the i1 − i+ 1 first characters with suffix Si, the positions on the edge

to the new leaf j are greater than those on the edge leading to leaf i. Thus they are also

greater than the positions on the incoming edge of u – its parent node.
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Figure 3.3: The main observation of the Wavefront algorithm: j2 > i1.

Using this top-down approach, Wavefront never loads the oversized input string into

main memory, and all the multiple scans of the input string are performed sequentially.

For each prefix Pi it performs N/b waves, and each wave performs scanning of the entire

input string of size N . There are in total pN/b scans of the input of size N , where p,

the total number of different prefixes, roughly corresponds to the input-to-memory ratio

r = N/M : p = CN/M . Here, C is a constant that represents the double size of each suffix

tree node, and is in practice about 50. There are, therefore, 50N2/MB sequential scans. In

each scan at most b characters are scanned starting from N/p positions. The running time of

Wavefront on a single machine is therefore O(N3b/Mb) = O(50rN2). The construction can

be performed in parallel for each sub-tree, and this parallel construction does not require

machines with large RAM, since the algorithm works in a small constant-size working space.

3.2 THE B2ST ALGORITHM

Another approach is to extend the multi-way merge sort construction algorithm of Section

2.4.3 to the case of inputs that are larger than the main memory. Let r be the input-

to-memory ratio r = N/M , where M is the size in bytes of the available RAM, and let
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r > 1. Recall that in order to use the external memory two-phase multi-way merge-sort,

we partition X into (slightly overlapping) partitions and lexicographically sort the suffixes

in each partition. We can do this in main memory by using any of the best algorithms for

in-memory suffix sorting. Then, we output to disk the suffix arrays for suffixes in different

partitions.

A problem arises when we want to merge these suffix arrays. In the simple case of

merging sorted lists of keys, the relative order of elements from any two different lists is

determined by comparing these elements. However, in our case, all we have are the starting

positions of suffixes from different partitions, since this is all the information we can store

in suffix arrays. This does not help in determining the relative lexicographical order of

suffixes from different partitions, because our sorting keys are the substrings of X (not

their starting positions).

A näıve approach would compare two suffixes from different partitions by performing

random accesses to X, which in this case is on disk. This would lead to O(N) random disk

I/Os, a prohibitive amount even for small N . Be reminded that the size N of our input

string is several times larger than the available main memory (r > 1).

Algorithm 8: The B2ST algorithm.

input : string X of length N on disk; memory M to hold part of X

output: forest of suffix trees of X on disk, divided by lexicographic intervals

1 partition X into k substrings X1, · · · , Xk such that concatenation of each pair

XiXj (i < j) fits in M ;

2 for i = 1, · · · , k − 1 do

3 for j = i+ 1, · · · , k do

4 concatenate XiXj ;

5 build suffix array with lcp SA(XiXj);

6 write SA(Xi) into a separate file on disk;

7 write order array Ri,j with lcp into a separate file on disk;

8 end

9 end

10 mergePartitionsBBST()

Algorithm B2ST 1 solves the problem of ordering suffixes from different partitions by

avoiding actual character comparisons. Instead, it deduces the necessary information about

the relative order and the lcp of any two suffixes from special structures – pairwise order

arrays – which are created in advance, in the first phase of the merge-sort. In the merge

phase the order arrays are uploaded sequentially from their disk runs. Thus, there is no

1B2ST stands for Big string Big tree Suffix Tree
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Function mergePartitionsBBST

input : k suffix arrays SA(Xj) for sub-strings of X on disk;

k(k − 1)/2 order arrays Ri,j on disk;

output: forest of suffix trees of X on disk, divided by lexicographic intervals

1 allocate k suffix array input buffers IB(SA); k(k − 1)/2 order array input buffers

IB(R) and 1 output buffer OB;

2 initialize suffix tree ST in OB;

3 for i = 1, · · · , k − 1 do

4 read part of SA(Xi) from disk into buffer IB(SAi);

5 for j = i+ 1, · · · , k do

6 read part of Ri,j into IB(Ri,j)

7 end

8 end

9 create heap of size k;

10 insert first element of each IB(SA) into heap;

11 to compare elements of IB(SAi) and IB(SAj) consult the comparison bit in

IB(Ri,j);

12 while heap is not empty do

13 pop the smallest suffix Sx of partition Xp from the top of heap;

14 read lcp of this suffix with the last inserted suffix from the corresponding

IB(R) ;

15 add to ST an internal node at depth lcp and a leaf node for suffix Sx;

16 if OB is full then

17 write ST to disk;

18 initialize new ST in OB;

19 end

20 if IB(SAp) is empty and not the end of SA(Xp) then

21 fill IB(SAp) with the next suffixes;

22 end

23 when needed refill any order buffer containing p: IB(Rp,∗) or IB(R∗,p);

24 if IB(SAp) is not empty then

25 insert next suffix Sy of partition Xp into heap;

26 to rebalance heap consult the comparison bit in the corresponding order

array;

27 end

28 end
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need to access the entire input string in the merge phase, and we completely avoid random

I/Os to the disk-based input string. The pseudocode is given in Algorithm 8.

The first step of the B2ST algorithm is partitioning the input string X of size N

into k partitions such that k = 2r (recall that r = N/M is the input to memory ratio).

We require that memory M accomodates the concatenation of any pair of partitions. An

example in Figure 3.4 shows the partitioning of X = ababaaabbabbbabaabab. The memory

designated for the input string can accomodate only 2 partitions of size no more than 8

bytes each.

54321543215432154321

babaababbbabbaaababa

Partition DPartition CPartition BPartition A

54321543215432154321

babaababbbabbaaababa

Partition DPartition CPartition BPartition A

Figure 3.4: Partitioning of input string X = ababaaabbabbbabaabab into four partitions. The

combined size of each partition pair with their tails must be less than the size of main memory

M .

In the next step we generate a suffix array with lcp for each pair of partitions. We

concatenate every possible pair u, v of partitions (0 ≤ u < k − 1, u+ 1 ≤ v < k, u < v) into

string XuXv. We load this input into the main memory and build suffix array SAuv with

corresponding lcp values for each suffix. We can use any algorithm from Section 2.4 that

can build a suffix array with lcp information using disk space for any input, given that this

input fits entirely into main memory. The example in Figure 3.5 shows how the suffix array

with LCP looks like for the pair of partitions A, B.

From each SAuv (u < v), we extract two structures: (1) the suffix array SAu for par-

tition Xu and (2) an “order array” Ruv of size |Xu|+ |Xv|. The order array Ruv contains

the lcp entries of SAuv plus the partition ID information. Since each Ruv contains infor-

mation about two partitions only, we just need to use one bit to represent the partition ID

in Ruv. Specifically, we use 0 for u and 1 for v (u < v). Figure 3.6 shows SAA and RAB

extracted from SAAB in Figure 3.5. At the end of this step we have on disk k suffix arrays

for k partitions (of total size of O(N)), plus k(k − 1)/2 order arrays for each possible pair

of partitions (of total size kN).

This is all the information we need to efficiently perform the next step – the merge.

As a result of this merge we produce the suffix tree (or the suffix array with lcp) for the

entire input string X. We do this without loading the entire input string into main memory.

In fact, we never access X anymore.

In order to merge the suffix arrays of different partitions, we use the information from

the order arrays. Notably, all these arrays are accessed sequentially. More specifically, the

merge works as follows. As in the classical multi-way merge sort, we have k input buffers
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bbaabababb

abbabbaaba

bbbbaaaaaa

baaabbbbaa

………………………

partition bit

LCP

suffix start

1320323120

BBAABBAABA

3424521315

SA
AB

(suffix array)

bbaabababb

abbabbaaba

bbbbaaaaaa

baaabbbbaa

………………………

partition bit

LCP

suffix start

1320323120

BBAABBAABA

3424521315

SA
AB

(suffix array)

3215432154321

bbbabbaaababa

Partition BPartition A

3215432154321

bbbabbaaababa

Partition BPartition A

Figure 3.5: Suffix array with LCP for pair of partitions A and B for the input in Figure 3.4.

The total length of both partitions is less than the size of main memory: |XA|+ |XB | < M .

1320323120LCP

partition bit BBAABBAABA

R
AB

1320323120LCP

partition bit BBAABBAABA

R
AB

24135

SA
A

24135

SA
A

written to disk

Figure 3.6: Example of an output after pairwise partition sorting. Two structures are extracted

from suffix array SAAB : (1) the suffix array of partition A and (2) the order array RAB storing

the relative order of suffixes in A and B. These two structures are written to disk.
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for each of the k disk-based suffix arrays. We denote the buffer for a suffix array SAu by

SA BUFu. In addition, we use k(k − 1)/2 input buffers for order arrays. We denote the

buffer for an order array Ruv by R BUFuv. Finally, we have an output buffer, ST BUF ,

where we collect the nodes of the merged suffix tree before emptying it to disk. The total

size of all the buffers is constant and matches the size of the available main memory. The

merge proceeds as usual by comparing the top elements of each suffix array buffer, inserting

them into a heap, and removing the lexicographically smallest element of the heap to add it

to the output suffix tree. In order to compare two entries of, say, SA BUFu and SA BUFv

(u < v), while inserting to and rebalancing the heap we consult the partition bit in buffer

R BUFuv under the current pointer. If the bit is 0, we conclude that the current suffix of

partition u is lexicographically smaller than the current suffix of partition v, and vice versa.

We continue in a similar way until all suffixes are merged. Note, that the disk-resident suffix

arrays and the order arrays are read sequentially. This would not be the case if we were

consulting the input string X to resolve a relative order for arbitrary suffix start positions

of different partitions.

To summarize, during the merge we determine the relative order and the lcp between

suffixes from different partitions from the information collected in the pairwise suffix sorting

step. The advantage of this is that the information in the order arrays can be accessed

sequentially and thus can be kept on disk. Otherwise we would need to compare substrings

of X starting at arbitrary positions.

B2ST does not require numerous scannings as in Wavefront. However, it requires a

large temporary disk space. Specifically, we need D = k2p = kN bytes of disk space to store

the order arrays for all partition pairs. Since the number of partitions is k = N/M , from

D = N2/M we can determine the size of the largest input that we can process with M

bytes of internal memory and D bytes of disk space. If we substitute the average values for

modern computers, D = 1012 (1 TB), and M = 4× 109 (4 GB), then we can build suffix

trees using such a machine for up to 60 GB of input. Note, however, that disk space is much

less expensive than main memory nowadays.

Regarding the execution time, it is clear that the construction of suffix arrays for a pair

of partitions can be done in parallel, since each such sorting is independent of the others.

The scanning of O(kN) intermediate disk structures in the merge step is very efficient due

to the sequential reading.

Because the suffix array construction and LCP computation can be done in linear

time, and because we have k(k − 1)/2 different pair combinations, the running time of

the sorting step is O(kN) (where k = 2r). In other words, the time is proportional to the

total input size and the input-to-memory ratio r (i.e. how many times our input exceeds the

available main memory). The suffix arrays and the order arrays produced in this step require

O(kN) temporary disk space. In the merge step, the suffix tree of size O(N) is constructed
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in time linear in N . This requires, however, a complete scan of the intermediate order arrays

of size O(kN). Thus, the total running time of the B2ST algorithm is O(kN).

For comparison, the running time of the Wavefront algorithm is O(kN2).

3.3 SUMMARY

In this chapter, we presented two efficient external-memory suffix tree construction algo-

rithms for very large inputs. Both algorithms are designed to store all inputs, outputs

and intermediate data structures on disk, and to access the disk-based data structures se-

quentially. The Wavefront algorithm achieves this by numerous sequential scannings of the

input string, while the B2ST algorithm uses large temporary disk space. These are the first

practical algorithms that allow overcoming the input string bottleneck for a fully-scalable

construction of suffix trees. Whether the computation can be done more efficiently from

the running time or disk space point of view remains an open question.

3.4 BIBLIOGRAPHIC NOTES

The Wavefront algorithm was proposed by Ghoting and Makarychev [2009]. B2ST was

introduced by Barsky et al. [2009] and extended by Barsky et al. [2011].
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C H A P T E R 4

Queries for disk-based indexes

In this chapter, we explore how to use the disk-based indexes constructed by the algorithms

in chapters 2 and 3 for different queries. In order for the queries to be efficient, we need

to organize the indexes on disk in a way that minimizes the number of random disk I/Os

when answering queries. We start, in Section 4.1, by discussing different variants of such

layouts. In Section 4.2, we present different types of pattern matching using suffix trees.

Section 4.3 is devoted to algorithms that use suffix trees for finding repeating and unique

substrings.

4.1 INDEX LAYOUTS

First, we need to take into account that on-disk full-text indexes are often too big to be

loaded entirely into RAM. Therefore, measures should be taken to optimize their layouts

on disk for sequential reads.

We recall that most of the algorithms presented in the previous chapters do not

deliver a single suffix tree on disk, but rather a decomposition forest of suffix trees. So far,

we discussed that such an organization is useful during the construction. It turns out that

this is also necessary for performing efficient queries. If a single suffix tree is of a size that

is much larger than the available main memory, then searching for a query pattern Q of

length q may incur q random I/Os, plus one random I/O for each occurrence, summing up

to O(q + occ) random disk I/Os. The need to decompose the tree into meaningful smaller

trees is even more prominent for algorithms that require a depth-first traversal (DFT) of the

entire tree. In such cases, the number of random I/Os will be O(N), and the performance

of DFT-based algorithms will severely degrade.

Thus, an important practical requirement for the output suffix trees is that each

tree can be loaded with one random disk I/O and traversed entirely in main memory.

Furthermore, each such tree must have some unique identifier to be located quickly.

These requirements gave raise to several tree partitioning schemes.

4.1.1 PARTITIONING BY PREFIX

Partitioning by prefix is the most commonly used decomposition. For each prefix, there is a

separate tree which contains all suffixes sharing this prefix. In order to search for a pattern

Q, we need to locate and sequentially load a tree STi corresponding to a prefix of Q. Then
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we find all the occurrences of Q in STi. Due to partitioning by prefix, there are no other

occurrences of Q to be found in another tree.

For DFS, we sequentially load each tree, and thus the maximum number of random

I/Os equals the total number p of such trees.

If the size of each prefix is constant, say P , then the total number of prefixes is |Σ|P .

Constant-size prefixes are used in Hunt’s algorithm (Section 2.2), in distributed and paged

suffix trees (Section 2.3.2), and in the TDD algorithm (Section 2.4.1). This partitioning

scheme works well in practice, except when the (real-life) input data is so skewed that for

some prefixes the trees are very small, whereas for others so large that they cannot be

entirely held in the available main memory.

Variable-length prefixes are used in Trellis (Section 2.4.2) andWavefront (Section 3.1)

to improve over the data skew problem. This partitioning scheme is described in detail in

Section 2.4.2. In order to determine the collection of variable-length prefixes such that all

the output trees are of approximately equal size, multiple scans of the input are performed.

However, even after that, some trees may be significantly smaller than others.

Partitioning by prefixes has the disadvantage that, for very large inputs, the number

of prefixes can be very large. For instance, with equal-length prefixes, the total number of

prefixes p grows exponentially with the prefix length. Recall that algorithms such as the

one by Hunt, TDD, or Wavefront perform p iterations over the entire input of size N . A

single sequential scan by itself is fast, but the number of scans should not be arbitrarily

large. This holds the aforementioned algorithms from scaling up for very large inputs. For

example, the authors of TDD do not recommend the length of prefixes to be larger than 8

characters, since otherwise the processing time increases dramatically.

4.1.2 PARTITIONING BY INTERVALS

Another way to partition suffix trees is partitioning by intervals, used in DiGeST (Section

2.4.3) and B2ST (Section 3.2). If we build the trees from lexicographically sorted suffixes,

then we can write the output trees to disk according to lexicographic intervals of the

suffixes in each output tree. In order to locate each subtree, the 32-bit prefixes of the

lexicographically smallest and the largest suffixes in that tree are recorded in a collection

of dividers, which divide the resulting forest of trees by their lexicographic intervals. The

search starts by locating the proper divider and then loading into memory the entire tree

corresponding to this interval. An example is presented in Figure 4.1. All the trees are

of equal size. This solves the problem of data skew. In addition, we avoid multiple scans

required in order to determine a collection of variable-length prefixes.

Let us now look at a suffix-tree forest produced by DiGeST or B2ST . Such a forest is

a collection of suffix trees, each of which is of a small enough size to be quickly loaded into

main memory using a sequential disk read. The collection of dividers can be kept entirely in

main memory due to the small size of this collection. There is a trade-off between the number
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Figure 4.1: Forest of suffix trees for X = abcabcabd. The collection of dividers (in the top right

corner) is kept in main memory. With each interval we associate a pointer to a corresponding

suffix tree. Such a suffix tree can be loaded from disk sequentially.

of partitions and their size: the number of suffixes in each partition should be adjusted for

fast reads. The authors of DiGeST have experimentally determined the search-optimal size

of each tree to be of 512, 000 nodes per tree, accounting for 256, 000 suffixes. Here, each

tree occupies 11.7 MB of disk space. For instance, for an input of 10 GB, the total number

of partial trees of this size does not exceed 85, 000, and thus the collection of dividers is

kept in main memory during the search.

4.1.3 STRING B-TREE

A String B-tree is a combination of B-trees and suffix trees. The String B-tree has the same

worst case performance as the B-tree, but handles strings of unbounded length, which

are not stored explicitly. Instead, as for suffix trees, the substrings are represented by the

corresponding pointers to the input string. Therefore, the input string is not a part of the

String B-tree, but is stored independently on disk. Each node of the String B-tree occupies

one block and represents a (lexicographically) ordered interval of suffixes, stored in the form

of a small suffix tree. An enhanced suffix array can be converted into a String B-tree by
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grouping corresponding suffixes into corresponding B-tree nodes. The String B-tree can be

regarded as an optimized balanced disk layout of a suffix tree.

Note, however, that suffix trees partitioned by intervals (as in DiGeST and B2ST )

are also balanced, in the sense that they consist of a forest of equal-sized trees, rather than

a single tree with unbalanced topology. Using partitioning by intervals, and keeping the

collection of pointing dividers in main memory, we can perform a search with two random

disk I/Os only, as compared to O(logb N) random accesses for a String B-tree containing N

suffixes (for a block size of b). Thus, from a search performance point of view, suffix trees

partitioned by prefixes are not less efficient than String B-trees.

Despite the claim that the String B-tree supports updates, these updates have little

practicality when dealing with strings of significant length, since for each new string Y we

want to index all the |Y | suffixes of this string, thus requiring for each suffix O(logB N)

random disk I/Os to the String B-tree and |Y | random disk I/Os to the input string

(with N being the number of suffixes previously inserted into the String B-tree). Thus,

the construction by insertion of a String B-tree for input of size N requires O(N logB N)

random disk I/Os, which is clearly not practical for large N .

We do not discuss the use of String B-trees in our subsequent discussion. We focus

instead on the use of the forest of interval-partitioned suffix trees.

4.2 PATTERN MATCHING WITH DISK-BASED INDEXES

4.2.1 EXACT PATTERN MATCHING

Exact pattern matching (EPM) is to determine at what positions a short query string Q

(called pattern) occurs as a substring of a larger string X. EPM is often a sub-task in

multiple string searching algorithms. The optimal online algorithms for EPM can locate a

pattern of length q in a string of length N in time O(N + q), i.e. linear in N . However, for

very large strings, which are the focus of this work, this is an unsatisfactory performance.

After the off-line pre-processing of the string into its suffix tree, the pattern can be

located in time O(q + occ), where occ is the number of occurrences. However, when the

suffix tree resides on disk, we also need to account for the number of random disk I/Os

incurred during the search.

We remind the reader that the suffix tree does not store explicitly the labels of its

edges. Instead, the edge labels are represented by an ordered pair of integers denoting its

start and end positions in the input string.

Let us assume that we have constructed a suffix tree for a string significantly larger

than the main memory using either Wavefront or B2ST presented in Chapter 3. In this

case, the string resides on disk during the query time. Note that to search for query Q in

this tree using a traditional suffix tree traversal of Section 1.4 we (näıvely) compare the

characters of Q to the characters of X as indicated by the positions of the edge labels.

Such a search, unfortunately, requires multiple random accesses to the input string, and



60 4. QUERIES FOR DISK-BASED INDEXES

therefore is quite inefficient when X is on disk. In the worst case, this takes q random disk

accesses to the input string.

However, random accesses to X during the search can be avoided if we follow the

PATRICIA search algorithm, which we call blind search. Such a search consists of two

phases.

In the first phase, we trace a downward path from the root of the tree to locate a

corresponding suffix Si. We remark that we do not match all the characters of this path

to the characters of our query: we start out from the root and only compare some of the

characters of Q with the branching characters found in the arcs traversed until we either

reach leaf Li, or no further branching is possible. In the latter case, we choose Li to be any

descending leaf from the last node traversed, say node v.

In the second phase, we read substring X[i, i+ q] from the input string X which is on

disk, by performing only one random access to the input, instead of q as in the usual suffix

tree search. We compare X[i, i+ q] to Q; if both are identical, we report an occurrence of

Q in X and collect all the remaining occurrences from the leaf nodes in the subtree of v (if

v is not a leaf).

Consider, for example, the suffix tree for X = ababcababd and the two queries Q1 =

aaab and Q2 = abab shown in Figure 4.2. By matching only the first and the third characters

of Q1 or Q2, and then verifying the queries against suffix S1, we perform only one random

access to the input string per query. Such an efficient (from the external memory point of

view) search does not yet exist for alternative indexing structures, such as suffix arrays.

In practice, the algorithm performs only 2 random disk I/Os: (1) loading the corre-

sponding suffix tree and (2) reading the substring of X to verify the blind matching. For

some patterns that occur multiple times in the input, the search can spread to several trees

corresponding to consecutive intervals.

4.2.2 MATCHING ALL SUBSTRINGS OF A QUERY STRING

The problem of matching all substrings (MAS) is to determine all the occurrences of each

substring of query Q in a string X.

MAS often arises in bioinformatics as a sub-problem for heuristic local similarity

search, such as BLAST, which in the first step finds in the large input string (database)

occurrences of seeds – short substrings of a long query string. The problem has an efficient

solution using an in-memory suffix tree for X. The algorithm for substring matching uses

additional edges connecting nodes of the suffix tree, called suffix links. Suffix links have been

already mentioned in the context of the linear-time suffix tree construction (see Section 2.3).

Here we show how to use them for searching substrings of query string Q.

We remind that a suffix link is a directed edge from a suffix tree node v that represents

the path corresponding to a substring αx to another node u that represents substring x,

where α is a single character, and x is an arbitrary substring. Suffix links in the suffix tree
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Figure 4.2: A disk-friendly pattern search in the suffix tree for stringX = ababcababd. The first

characters of each edge are implied by the positions of a child node in the array of children. The

length of each edge is shown in brackets, which is deduced from the start and end positions of

edge-label substrings. For query Q1 = aaab we match Q1[1] and Q1[3], and then we retrieve the

leaf L1 as well as the substring X[1, 4]. Verification fails, since aaab 6= abab. Pattern Q1 = aaab

is not a substring of X. For query Q2 = abab we follow the same path. This time the verification

is successful, since Q2 = X[1, 4]. We report all the occurrences of Q2 in X by collecting leaves

1 and 6. In each case, only one random access to the input string is performed.

for X = abababc are shown in Figure 4.3 as dotted arrows. For the ⋆-node that represents

substring abab, the suffix link leads to ⋆⋆-node that represents substring bab. In turn, the

outgoing suffix link from the ⋆⋆-node leads to a ⋆ ⋆ ⋆-node - the end of path for substring ab.

If we want to locate occurrences of all substrings of query string Q = babac, the näıve

approach is to match each suffix and each prefix of Q to a path from the root of the

suffix tree (see Figure 4.3). This would require O(q3) character comparisons, which can be

expensive when the length q of Q is large. By using suffix links the task can be accomplished

in time O(q + occ), which is optimal, because q is the size of the input and occ is the size

of the output. The process is as follows.

We start by matching characters of suffix S1(Q) = babac to a path in the suffix tree,

successfully matching the first four characters. The occurrences of prefixes of S1(Q) can be

collected from the leaves in the subtrees of the ⋆ ⋆ ⋆⋆-node and ⋆⋆-node. Namely,

b occurs at position 6;
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Figure 4.3: Suffix tree with suffix links (dotted arrows) for input string X = abababc. The

search for all substrings of query stringQ = babac is performed by matching suffix S1(Q) = babac

starting from the root, and then the search for the rest of suffixes continues not from the root,

but by traversing the suffix tree following the suffix links.

bab – at position 4;

baba – at position 2.

Next, instead of matching the next suffix S2(Q) = abac starting from the root, we

follow the suffix link from the ⋆⋆-node to the ⋆ ⋆ ⋆-node and collect occurrences of prefixes

of S2(Q) from the underlying leaves:

ab – at position 5;

aba – at positions 1 and 3.

Again, from the ⋆ ⋆ ⋆-node we jump to the ⋆ ⋆ ⋆⋆-node where we collect occurrences

of substring ba, that is 2 and 4.

Finally, from the ⋆ ⋆ ⋆⋆-node we jump to the root and collect occurrences of substrings

a and c. Observe that we have compared only q symbols in total.

The suffix links, therefore, represent shortcuts that allow navigating across the suffix

tree faster. Moreover, if the path is found for substring αx, then there must be a path for

substring x; after all, this is a tree of all suffixes, and x is the suffix of αx. This allows

skipping the matching of characters after αx has been matched.

However, for partitioned disk-based suffix trees suffix links are not very useful. If the

suffix tree of Figure 4.3 is partitioned into multiple sub-trees and these sub-trees reside on

disk and cannot be simultaneously held in main memory, then jumping across such sub-

trees following suffix links will be too expensive. The example for the same query Q = babac

and X = abababc in Figure 4.4 demonstrates that. The problem here is that the search is
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dominated by the number of random disk I/Os rather than by character comparisons after

a sub-tree is already in RAM.

On the other hand, by grouping suffixes of Q into two sets according to the partitions

of this suffix tree and then performing the blind search for each set will lead to a better

performance: in this case the sub-tree that has been already searched is not accessed again.

Hence, for partitioned on-disk suffix trees the use of the suffix links is limited.
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Figure 4.4: Partitioned suffix sub-trees with suffix links between them for the same input string

X = abababc as in Figure 4.3. Here, the shortcut function of the suffix links is not beneficial

since for this case it implies jumping from one random disk location to another.

The Trellis and Wavefront algorithms propose a method of adding suffix links in a

post-construction phase, and show that the process is quite expensive. In addition, they

do not present an application where the use of suffix links connecting nodes of different

sub-trees on disk will lead to an improved query performance.

4.2.3 APPROXIMATE PATTERN MATCHING

The problem of approximate pattern matching (APM) is to find all occurrences of query

string Q in string X, such that these occurrences are allowed to have up to k errors, that is

substitutions, deletions or insertions of a symbol. For example, forQ = bcc,X = abbabc, and

k = 1, an approximate occurrence of Q in X is at position 5 of X: the substring X[5, 6] =

bc matches bcc with 1 error – deletion of symbol c. APM has important applications in

bioinformatics, where very often patterns do not occur in their exact form, but with a

small number of errors.
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The näıve search for occurrences of Q in X would be to compare each suffix of X with

Q using dynamic programming, and once there are more than k errors between some prefix

of a suffix of X and Q, abandon this suffix and check the next one. A similar procedure is

performed if we use suffix trees for solving APM. The big advantage of the suffix tree is

that it groups together all repeating substrings of X, thus only distinct prefixes of suffixes

of X are compared with Q (only once). Obviously, this is beneficial for inputs that contain

a large number of repeating substrings, which is in general the case for DNA sequences.
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babc

ab

babc

1

abc

34

c
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c

6

c

a b b a b c

1 2 3 4 5 6

Figure 4.5: Example of the approximate matching of query string Q = bcc and input string

X = abbabc, using the suffix tree for X. .

APM for Q = bcc, X = abbabc, and k = 1 using a suffix tree is shown in Figure 4.5.

If we know that the number of errors between prefix ab of suffixes S1 and S4 and bcc is

greater than one, we do not need to compare further below the node marked by X, and

we can abandon the entire sub-tree below this node. We abandon the rest of the paths

after checking prefix bab and prefix bba, and the only solution is pattern bc, which starts at

position 5 of X.

APM is a computationally expensive process, and it can be accelerated by the use of

suffix trees, but only in the case when X is in main memory so that each character is read

without incurring random disk access. Note that for APM, the entire suffix tree needs to

be traversed. The blind search employed for EPM does not work here; we need to compare

actual characters of X according to the positions indicated on edge-labels of the suffix tree,

and this may incur O(N) random accesses to X. An efficient solution to APM for X that

is too big to fit in main memory is an open problem.

4.3 REPEATING AND UNIQUE SUBSTRINGS

In this section, we discuss another type of queries which can be performed using disk-based

suffix trees: queries about repetitive and unique substrings. Repetitions are very common
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in DNA sequences. Families of repeating sequences account for about one third of the hu-

man genome. The repetitions have numerous practical uses. For example, genetic mapping

requires the identification of features (or markers) in DNA that are highly variable among

individuals. Short repetitive substrings called tandem repeats are just such markers. They

vary in number between individuals and are used in the genetic-level search for defective

genes, in forensic DNA fingerprinting, and many other applications. The important prob-

lem of finding repetitive substrings can be greatly facilitated by suffix trees. The same is

true for finding unique substrings, which occur only once in the entire input string.

4.3.1 MAXIMAL REPEATS

A maximal repeating pair in input string X is a pair of identical substrings α and β, such

that the character to the immediate left (right) of α is different from the character to

immediate left (right) of β. That is, extending α or β to either side will break the equality

of two substrings. We call each maximal repeating pair a maximal repeat (MR), and each

MR can be uniquely identified by a triple: (start position of α, start position of β, and

their length). For example, in X = abcabcabd, abcab is an MR and its representing triple is

(1, 4, 5). The repeating substrings X[1− 5] and X[4− 8] cannot be extended to the left or

to the right.

The problem of finding all MRs in X can be solved in linear time using the suffix tree

of X. The suffix tree for X = abcabcabd is presented in Figure 4.6. The intuition behind

the algorithm for finding MRs is as follows. Because the suffix tree contains all the distinct

substrings of X, if the subtree induced by some path branches into several nodes, then the

substring labeling this path is a repeating substring, i.e. it occurs as a prefix of more than

one suffix. In order to find maximal repeats, we only need to consider internal nodes of

the suffix tree, since if the path ends in the middle of an edge, then it can be extended up

to the next internal node. For example, substring abca marks such a path of non-maximal

repeating substring. Each internal node of the suffix tree represents a potential maximal

repeat, since its path-label is already maximal to the right – there are distinct characters

labeling the branching edges. This leads to the conclusion that there are at most N MRs

in a string X of size N .

However, not every internal node represents a maximal repeat, because it might be

the case that the substring represented by a path to this node can be extended to the left. In

order to check this left character during the traversal of the tree, and to not access the input

string, the immediate left characters can be recorded on each leaf node in advance during

the tree construction. Then, during the depth-first traversal of the suffix tree, the algorithm

marks each internal node as being the root of either a subtree with leaves that have distinct

left characters, or a subtree without any leaf offering some distinct character. Substrings

corresponding to the latter internal nodes can be extended to the left, thus these internal

nodes do not contribute an MR. As an example see Figure 4.6. The algorithm reports only
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Figure 4.6: Suffix tree forX = abcabcabd with the leaves marked by a symbol to the immediate

left of the corresponding suffix start position (ǫ represents an empty string). This information

is used in order to check whether the left extension of the repeat is possible. The nodes corre-

sponding to the maximal repeats are marked by ⋆.

(1, 4, 5) and (1, 7, 2) as MRs. The other internal nodes contain child leaves with identical

left characters.

This is the first algorithm based on the depth-first-traversal of the entire tree, which

considers only the tree topology.1 Hence, it is efficient for a disk-based setting considering

the partitioned tree layouts. It will perform a sequential read of the entire suffix tree from

disk, traverse it in main memory, and collect MRs without knowing the characters of the

edge-labels (assuming the left characters on the leaves were added during the tree construc-

tion). The MRs can then be reported as triples of positions and length. The extraction of

the corresponding actual substrings might, however, incur random I/Os to the input string.

4.3.2 COMMON AND UNIQUE SUBSTRINGS

In the same spirit, we can use suffix trees to find identical substrings in multiple input

strings. If we add to the suffix tree more than one input string, then we obtain a modification

called a generalized suffix tree for a set of strings. The tree contains all suffixes of each input

string, and requires an additional identifier of the string id on the edge-labels. An example

of the generalized suffix tree for strings A = abbab and B = babab is shown in Figure 4.7.

Using a generalized suffix tree, we can find all substrings common to both input

strings. In fact, the common substrings correspond to the labels of any path that induces

1The APM algorithm in the previous section required the information about the actual characters of the input

string.
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Figure 4.7: The generalized suffix tree for input strings A = abbab and B = babab. All sub-

strings common to both A and B can be found in time linear in the total input length. The
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Figure 4.8: The substring aba, unique to input string A = abbab, is shown as a bold path in

this generalized suffix tree for A = abbab and B = babab. Any substring that ends on a leaf edge

is unique, since it occurs only once, otherwise it would label a path to some internal node.
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a subtree with leaves from different strings. For an example, consider the internal node

reached by path ba highlighted in Figure 4.7.

This efficient solution to the common substrings problem may have an interesting

application for sequences of different genomes: in terms of genomic information, the suffi-

ciently long substrings occurring in multiple genomes of different species point to conserved

regions, which were preserved during the evolution. The possibility of efficiently finding

these important common regions is greatly facilitated by the use of suffix trees.

The same is true for unique substrings. The example in Figure 4.8 shows how to find

substrings unique to a given input string. These are substrings that label a path that does

not induce a sub-tree with leaves from distinct input strings.

Finding common substrings is another example of the depth-first traversal of suffix

trees, which is very efficient also in disk-based settings: the algorithm reads small partial

trees sequentially and does not require referencing to the input strings, taking into account

only tree topology.

4.4 SUMMARY

In this chapter we presented several basic queries which use full-text indexes. We discussed

which of them can be as efficient on disk as in-memory. Among the considered queries, we

showed that exact pattern matching, computing repetitions, and finding common substrings

can be well served (incurring only a small number of random I/Os) by disk-based suffix

trees. On the other hand, the problems of all substring matching and approximate pattern

matching require new non-trivial solutions for the case when both the suffix tree and the

input string are on disk.

4.5 BIBLIOGRAPHIC NOTES

The algorithms performing exact pattern matching without preprocessing input string X,

and in time linear in the size of X, are from Knuth et al. [1977] and Boyer and Moore [1977].

PATRICIA search (blind search in our notation) was originally described by Morrison

[1968]. String B-trees were introduced by Ferragina and Grossi [1999]. The algorithm

for approximate pattern matching is from Navarro and Baeza-Yates [2000]. The rest of

algorithms are adopted from Gusfield [1997].
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Conclusions and open problems

In this book we presented practical algorithms for disk-based construction and querying

of full-text indexes. The algorithms perform well in practice and can be successfully used

for indexing all substrings in databases of long strings, especially of sequenced genomes.

We believe that these algorithms are important steps towards a fully scalable solution for

constructing full-text indexes on disk for inputs of any type and size. Once this is done, a

whole world of new possibilities will be opened, especially in the field of biological sequence

analysis.

In order to use disk-based full-text indexes to their full potential, there are some

problems that need to be addressed in future research. Specifically, we identify (a) improving

the efficiency of disk-based suffix tree construction and (b) scaling-up the use of these suffix

trees for complex tasks (such as approximate pattern matching) to be the most important

open problems. We elaborate more on these problems in the following.

5.1 NEED FOR BETTER CONSTRUCTION ALGORITHMS

As we know from Section 2.1, all full-text indexes – excluding the plain suffix array – can be

converted into each other by a disk-friendly sequential scan. This means that it is sufficient

to develop the most basic form of the full-text index: the suffix array with the lcp.

There are promising theoretical results for constructing the plain suffix array, which

can be adopted for sequential memory access. An example is the Difference Cover algorithm

by Kärkkäinen et al. [2006]. However, the suffix array needs to be augmented with the lcp

information in order to be converted into any other full-text index. Though there exist

linear-time, space-efficient, and easy-to-implement lcp computation algorithms (see for ex-

ample Kasai et al. [2001]; Manzini [2004]), these algorithms perform random access to at

least one intermediate array of size N . Thus, these algorithms would severely degrade in

performance once N is larger than the main memory. This limits the scalability of indexing

to only strings which can be held entirely in RAM. Theoretical results for computing the

lcp array in external memory settings were reported by Chiang et al. [1995]. These results

are based on range minima queries, performed using special tree-like data structures and

an external memory sort of queries to minimize random disk I/Os. However, so far, no one

has been able to efficiently implement these ideas.

Note also that the best practical algorithms presented in Section 2.4 and Chapter 3,

optimized for sequential disk access, have an internal running time that is asymptotically
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quadratic in N . Although on average this time is only O(N logN), it increases dramatically

if we construct a generalized suffix tree for very similar DNA sequences. For example, in

order to compare DNA sequences of different genomes of the same species (c.f. “the 1000

genomes project”, Karow [2008]), when building a generalized suffix tree for these sequences,

all the algorithms presented in this book will perform poorly. The only algorithm not

suffering from this problem is B2ST (Section 3.2). However, it performs in time O(rN),

where r = N/M is the input-to-memory ratio. Due to this fact, it is better to perform the

pairwise sorting step of this algorithm in parallel on multiple machines, in order for the

construction to scale to the size of the entire Genbank (more than 100 GB of input).

5.2 NEED FOR BETTER QUERY ALGORITHMS

With a look at the potential applications of the on-disk full-text indexes in Chapter 4, we

notice scalability limitations of some of the presented algorithms. If we perform the task

of approximate pattern matching of query string Q in text X, we need to compare actual

characters of the string with actual characters corresponding to the edge-labels of the suffix

tree. This incurs massive random I/Os to input string X. Therefore, the use of suffix trees

for this task is limited to inputs that fit in main memory. A fully-scalable, efficient, APM

is an open problem.

The range minima queries used for the computation of the lcp information can also

be used for finding the lowest common ancestor node of two suffixes in the suffix tree.

The algorithms based on constant-time retrieval of the lowest common ancestor include an

algorithm for APM by Landau and Vishkin [1986] and an algorithm for finding common

substrings for a set of multiple strings in time O(N) described by Gusfield [1997]. These

algorithms are not very efficient for disk-based indexes because no practical implementation

of the range-minima queries for a disk setting exists. Recent advances in the adaptation of

the lowest common ancestor retrieval to the disk access computational model are presented

by Demaine et al. [2009]. These are interesting theoretical results, whose implementation

will require in practice multiple calls to a sub-routine of the external-memory sort, and this

can make the practical efficiency of these methods quite questionable. All the lowest com-

mon ancestor algorithms proposed for disk are quite involved and challenging to implement.

Thus, this would be an interesting area for an ambitious researcher.

A last note is about the usefulness of suffix links for algorithms on disk-based suffix

trees. Recall that suffix links connect each internal node representing some substring αx

(where α is one character long) of X with some other internal node where the path for

substring x ends. The suffix links – a by-product of the main memory linear time construc-

tion algorithms – can be useful by themselves as demonstrated in Section 4.2.2 using the

example of finding occurrences for all substrings of the query Q in string X. Suffix links can

be recovered in a post-processing step of the disk-based suffix tree construction. We believe

that these recovered suffix links in the external memory settings are of a limited use, since a
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link can lead to a different subtree laid out in a distant disk locations. This means that the

assumed “constant-time” jump following a suffix link can cause in fact an entire random

disk I/O. Hence, the algorithms whose efficiency relies on the use of suffix links (such as

the algorithms of Kurtz and Schleiermacher [1999]; Kurtz et al. [2004]), might require new,

non-trivial, adaptations when moved from in-memory to on-disk settings.
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