Shortest Paths Revisited 1/4

Lecture 07.06 by Marina Barsky

Paths with costs

In a weighted graph, the IS the sum of the weights (costs) of the
edges along the path.

15 H
25
E
15 -25
30
60 G
10

5
I
A path of cost 55 + 25 - 25 = 55.

A path from x to y is a minimum-cost path if it has the smallest cost among all
paths from x to y.

Recap:

Single-source Minimum-Cost Paths

without negative edge weights

Dijkstra Algorithm

Minimum Cost Paths: will simple greedy work?

The straightforward greedy
1 4 approach: from each node on
the path, take the edge with the
2 smallest cost
3/

4 Is 6 the cost of the minimum-
cost path fromstot?

Simply taking the smallest-weight edge does not work!

Dijkstra algorithm is the combination of greed and iterative improvement

Storing the Minimum Cost

We store the minimum cost from the start node inamin cost array.
e The minimum cost from the start node to x ismin cost[x].
e The startnode s hasmin cost[s] = 0.

There is a path of cost 20 from s to u.
There is a path of cost 10 from s to v.

Question: Will we ever need to change amin cost value during the
algorithm?
Or will the value be set once and then never change?

Storing the Minimum Cost

We store the minimum cost from the start node inamin cost array.
e The minimum cost from the start node to x ismin cost[x].
e The startnode s hasmin cost[s] = 0.

There is a path of cost 20 from s to u.
There is a path of cost 10 from s to v.

Question: Will we ever need to change amin cost value during the
algorithm?
Or will the value be set once and then never change? The value can change

Property of Minimum-Cost Paths

Suppose that a minimum cost path from x to z goes through the nodes y,, y,, ..., ;.
Notice that the subpath from x to y, is also a minimum cost path from x to y; for all 1.

A minimum cost path from x to z. One of its subpaths is a path from x to the intermediate node ys;.

If there is another path from X to y; that has lesser cost than this subpath,
then the original path from x to z was not minimum cost (could have been improved).

Therefore, if we want to build minimum cost paths, then we never want to extend a
path that is not itself minimum-cost.
e Don't add node to the solution until we know that we have a minimum cost path

to it.
e We need to keep track of the current minimum cost path to each node.

e We will compute the shortest path from 'source’ node x to all other nodesy.

Dijkstra Algorithm: intuition

We maintain 2 sets of nodes:

Set X for nodes for which we already know the final cost of the min-cost
paths from S (Processed).

Set V-X of remaining nodes for which the min-cost path is yet to be found
(Unprocessed).

e We perform n iterations of the main loop:

e At each iteration we choose one node from V-X and add it to X
with its corresponding cost (and path if required).

e The node is chosen according to the minimum Dijkstra Greedy
Score (DGS).

e We store the current greedy score for vertex v in the min_cost
array

e We grow set X until all n vertices from V are added to X.

Dijkstra algorithm: short illustration

Set X
-
A Is a min_cost array containing
DGS for each of n nodes
A[s]: 0

P is an array containing min-cost
paths from s to each of n nodes

P[s]: s-s

J

e Oiriginally, only the source vertex S is in X: the cost of the path S-S is 0.
® For paths from S to other nodes the cost is unknown, we mark them as «.
® At each step, there will be edges inside X, inside V-X, and the edges between the 2 sets.

e We are interested only in edges that “cross the border” - they will allow us to
improve the DGS for each remaining node

Dijkstra algorithm: short illustration

Set V-X
Set X

Alu]: 1

4 / P[u]: s-u \
1

Als]: 0 /

P[s]: s-s \
Alw]: 4

j \ Plw]: s-w /

e The goalis to add more nodes to X.

e The only 2 edges extending already known min-cost path are (s,u) and (s,w).

e For both u and w, we update their DGS to the sum of A[s] + cost(s,u) and A[s] +
cost(s,w) respectively.

e This will be a new Dijkstra Greedy Score for these nodes.

Dijkstra algorithm: illustration

Set V-X
Set X

Alu]: 1

4 / P[u]: s-u \
1

Als]: 0 /

P[s]: s-s \
Alw]: 4

/ \ Plw]: s-w /

e Next, we select the vertex with the minimum DGS - vertex u - and add it to X

Dijkstra algorithm: illustration

e Now we have a new node u in X, and we know that s~>u is the next smallest

min-cost path from s
e There are 2 new edges out of u which cross the border between X and V-X

e They may help improve the DGS of remaining nodes

Dijkstra algorithm: illustration

e \We check if we can update the DGS using A[u] + cost(u,t) and AJu]+cost(u,w)

Dijkstra algorithm: illustration

e Next we select the node with the smallest DGS and add it to X

Dijkstra algorithm: illustration

Set V-X
>
Alt]: 6
P[t]: s-u-w-t
(S /
Alw]: 3
Plw]: s-u-w

e The only new edge that can update DGS for t is (w,t).
e We check if the new score going through w is better, and update the final score
of t to A[w] + cost(w,t)

Dijkstra algorithm: illustration

Alt]: 6
P[t]: s-u-w-t

Alw]: 3

P[w]: s-u-w /

e The last vertex is added to X
e At this point all min-cost paths from s to each other vertex have been computed

Dijkstra algorithm: the paths

Set X

Alu]: 1
Plu]: s-u

Alt]: 6
P[t]: s-u-w-t

Alw]: 3
P[w]: s-u-w /

Do we really need to store the paths themselves?

No, instead of storing the min path for each node, we could just record the parent
node when we update DGS, and we will be able to recover the shortest path from

any node to s

Dijkstra Algorithm: correctness

Intuitively: the algorithm is correct because we transfer the node v into set X by
extending the shortest paths from the nodes for which we already know that the paths
from s are optimal.

Proof by induction (sketch):
® PBasecase: A[s]=0
® [nductive hypothesis:
for all v € X, A]v] is the cost of the shortest path s~>v
® |n each iteration:
We pick the vertex w ¢ X with the lowest DGS among all vertices & X.
The path from s to w extends some shortest path s~>v for some v € X.
We updated the DGS(w) with the lowest possible cost of extending any such path
® Then any alternative path from s to w which we did not explore yet must go
through some vertex z in V-X. But for any z, DGS(z) = DGS(w), so any such path
will have the cost at least Ajw] (not shorter).
® Hence, if we assume that each path from s to v € X was a shortest path, the
extension of one of such paths will be a shortest path too.

A full formal correctness proof of Dijkstra’s algorithm can be found here

https://drive.google.com/file/d/1NDtkfYaT44hA-Meh5Tu0gZAxQj1Uu3Me/view?usp=sharing

Pseudocode

Algorithm Dijkstra(G, array of edge weights w, start)

unprocessed: = empty set

min cost:= empty dictionary

for each u in vertices of G
min costfu]: = e
unprocessed.add (u)

min cost[start]: = 0
processed: = empty set
processed.add (start)

while unprocessed is not empty
v: = remove v with min cost from unprocessed
processed.add (v)
for each edge (v, u)
1if u 1n unprocessed:
min_costfu]: = min(min cost[u], min_cost[v] + w,)

Naive Dijkstra Algorithm

Running time of Dijkstra's Algorithm

Algorithm Dijkstra(G, w, start)

unprocessed: = empty set
min cost:= empty dictionary

for each u i1in vertices of G
min costfu]: = e
unprocessed.add (u)

min cost[start]: = 0 Loop is
processed: = empty set executed
O(n) times

while unprocessed is not empty

v: = remove v with min cost from unprocessed

processed.add (v)

Search for
min in set of
size O(n)

for each edge (v,u) % Each node may have degree O(n) - but total
sed:

amortized O(m) edges to process

if u 1n unproces

min costfu]: = min(min cost[u], min cost[v] + wmu)

The running time: n*n + m = O(n?)

Recap: Min-Priority Queue

A min-priority queue is an ADT for fast retrieval of min element.

Implementations: binary heap, balanced BST, Fibonacci heap (retirieval in time
O(1) but large constants).

For Dijkstra: Priority Queue ADT should be enhanced with the update* operation.

Priority queue
enqueue O(log n)-time
dequeue O(log n)-time

update O(log n)-time

*The update operation decreases the associated value of a given item.
In other words, it increases its priority.

We can keep pointers to each queue node to locate it quickly.

However if the priority of the heap node changed, we need then rebalance the
heap

Dijkstra's Algorithm with Priority Queue

The min cost priority queue (min pqg) stores tuples (node, DGS)
prioritized by DGS.

Algorithm Dijkstra Improved (G, start)

min pg:= empty priority queue
for each u 1in vertices of G
min pqg.enqueue ((u,*=))

processed: = empty set
min pg.update ((start, 0))

while min pg is not empty
(cost v, v): = min pqg.dequeue ()
processed.add (v, cost v)

for each edge (v,u):
1f u 1In min pqg: # we have pointer to each node in the extended priority queue
cost u:= min pg.get (u) .cost
if cost_v + w, , < cost_u:
min_pqg.update (u, cost v + w,)

Dijkstra's with Priority Queue: running time

Algorithm Dijkstra Improved(G, start)

min pg:= empty priority dqueue
for each u in vertices of G
min pqg.enqueue ((u,*))

processed: = empty set Loop is
min pg.update ((start, 0)) executed
N O(n) times

while min pg is not empty
(cost v, v): = min pqg.dequeue
processed.add (v, cost v)

() ‘4514 Each dequeue in time log n

In sum O(m) edges to process Quickly finds u in

min pg, and
updates only if

for each edge (v,u):
if u 1In min pqg:

cost u:= min pg.get(u) .cost new DGS is
if cost v + w, , < cost u: better: rebalance
min_ pqg.update (u, cost v + w,) in time O(log n)

Running time O(n log n) + O(m log n) = O(m log n)

Dijkstra Algorithm: running time

Running time with Priority Queue: O(m log n)
e |f m = 0O(n) [sparse graphs], then running time O(n log n)
e If m=0(n? [dense graphs], then running time is O(n? log n)

Dijkstra Algorithm: non-negative weights

e The algorithm combines ideas from both greedy and iterative improvement
techniques

e It iteratively improves DGS of each node until no more improvement is
possible and at this point the node is transferred into a processed set X

e However if edges are allowed to have a negative cost, then some of them
could potentially improve the DGS of already processed nodes (including the
source node s!)

e Then we would never have the processed set to start with

e Therefore this algorithm is not applicable for graphs with negative edge
weights

Activity: full step-by-step example of
Dijkstra’s algorithm

For those who knew but forgot how the algorithm works

Dijkstra's Algorithm: full example

Find all minimum cost paths from the source node C.

Dijkstra's Algorithm: full example

Known Remaining nodes
shortest paths with their Dijkstra
from C Greedy Score
To | Shortest DGS
V, path
A 0
C [C-CO0
B 0
D 00
E 00
F 00

We start by assigning Dijkstra Greedy Score (DGS)

to each node as « G °0
The only known min-cost path is C-C of length 0.

We know that it cannot be improved so we add it to

the Processed nodes (green)

Dijkstra's Algorithm: full example

Known Remaining nodes
shortest paths with their Dijkstra
from C Greedy Score
To | Shortest DGS
V, path
A 5
C C-CO0
B 20
D 10
E 15
F 25

Update DGS for all nodes adjacent to C.
Improve their DGS using edges that cross Processed G
and Unprocessed sets.

Dijkstra's Algorithm: full example

Known Remaining nodes
shortest paths with their Dijkstra
from C Greedy Score
To | Shortest DGS
V, path
Ac-a S
C C-C.O0
Bc-b 20
Dc-d 10
Ece 15
Foi | 25
Select the node with min DGS and add it to known min- G o

cost paths.

Dijkstra's Algorithm: full example

Known Remaining nodes
shortest paths with their Dijkstra
from C Greedy Score
To | Shortest DGS
V, path
A Bc-a—b 20 15
CcC C-CO
Dc-d 10
A | C-A'5
Ece 15
I:c-f 25
G o0

Update DGS for every node v adjacent to A: cost of
path(C-A) + cost of edge(A,v)

Select the node with min DGS and add it to
Processed

Dijkstra's Algorithm: full example

Known Remaining nodes
10 shortest paths with their Dijkstra
from C Greedy Score
To | Shortest DGS
5 V, path
A B 15
c-a-b
C [C-CO0
E.e 15
5 A | C-A'5
I:c-f 25
D C-D:10
G 0

Select the node with min DGS and add it to known min-
cost paths.

Dijkstra's Algorithm: full example

Known Remaining nodes
shortest paths with their Dijkstra
from C Greedy Score
To | Shortest DGS
v, | path
E.. 15
C C-C:0 i
|:c-f 25
A C-A:5
G 0
D C-D:10
B | C-A-B:15

Update DGS for all unprocessed nodes v adjacent
to B: cost of min path(C-B) + cost (B,v)

Select the node with min DGS and add it to known
min-cost paths

Dijkstra's Algorithm: full example

Known Remaining nodes
10 ° 20 shortest paths with their Dijkstra
from C Greedy Score

20
25 T | Shortest path DGS
5 0
15 ° w0 Vi |:c-e-f 25 20
C C-C:0
10 o Geeg 40
° 5
A C-A:5
@ D C-D:10
B | C-A-B:15
Update DGS for all unprocessed nodes v adjacent to E C-E:'15

E
Select the node with min DGS and add it to known
min-cost paths

Dijkstra's Algorithm: full example

Known Remaining nodes
° 20 shortest paths with their Dijkstra
) from C Greedy Score

20
25 To | Shortest DGS
@ 5 @ v, | path
5 10 G 40
15 _ c-e-f-g
C C-C.O0 30
10
5 @ 25 A C-A:5
5

D C-A-D:10

@ B C-A-B:15

Update DGS for all unprocessed nodes v adjacent to F: E C-E:15
len(C-F) + len(F,v).
This is the last node - mark it as processed.

F C-E-F: 20

Dijkstra's Algorithm: full example

All shortest paths
10 from C

Shortest path

20
20
25 Tov
5 @
@ e 10 C-C:0
10 @ o @ C-A:5
5
5
C-D:10

@ B C-A-B:15

E C-E: 15

> O

O

All min-cost paths from C to any other node have
been computed. F C-E-F: 20

C C-E-F-G:30

Traceback

Of course, instead of storing the min path for each node, we could just store the
cost of the path and the link to the parent node when we update DGS, and we will
be able to find the shortest path from any node to C

